×

The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds. (English) Zbl 1333.53050

The author shows that the sharp Sobolev inequality holds for certain metric measure spaces in the form known for some Riemannian manifolds. The proof follows the pattern of the known result.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
26D10 Inequalities involving derivatives and differential and integral operators
49J52 Nonsmooth analysis
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Ambrosio, L.: An overview on calculus and heat flow in metric measure spaces and spaces with Riemannian curvature bounded from below. Analysis and geometry of metric measure spaces, pp. 1-25 (2013) · Zbl 1271.49028
[2] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269-296 (1976) · Zbl 0336.53033
[3] Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geometry 11(4), 573-598 (1976) · Zbl 0371.46011
[4] Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. Modelling and optimisation of flows on networks, pp. 1-155 (2013) · Zbl 0857.26006
[5] Ambrosio, L., Gigli, N., Savaré, G.: Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case. Analysis and numerics of partial differential equations, pp. 63-115 (2013) · Zbl 1292.53029
[6] Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[7] Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[8] Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry-Émery condition, the gradient estimates and the local-to-global property of RCD*(K, N) metric measure spaces. J. Geom. Anal. 1-33 (2014) · Zbl 1335.35088
[9] Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. Lectures on probability theory (Saint-Flour, 1992), pp. 1-114 (1994) · Zbl 0856.47026
[10] Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033-1074 (1995) · Zbl 0857.26006 · doi:10.1512/iumj.1995.44.2019
[11] Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., pp. 177-206 (1985) · Zbl 0471.58025
[12] Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer, Cham (2014) · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[13] Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28-56 (2010) · Zbl 1196.53027 · doi:10.1016/j.jfa.2010.03.024
[14] Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23(2, suppl.), 245-287 (1987) · Zbl 0634.60066
[15] Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 1-79 (2014) · Zbl 1329.53059
[16] Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169-213 (2014) · Zbl 1310.53031
[17] Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in RCD*(K,N) metric measure spaces. Nonlinear Anal. 95, 721-734 (2014) · Zbl 1286.58016 · doi:10.1016/j.na.2013.10.002
[18] Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (1999) · Zbl 0981.58006
[19] Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (688), x+101 (2000) · Zbl 0954.46022
[20] Ilias, S.: Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier (Grenoble) 33(2), 151-165 (1983) · Zbl 0528.53040 · doi:10.5802/aif.921
[21] Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[22] Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[23] Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44(3-4), 477-494 (2012) · Zbl 1250.53040 · doi:10.1007/s00526-011-0442-7
[24] Rothaus, O.S.: Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal. 42(1), 102-109 (1981) · Zbl 0471.58027 · doi:10.1016/0022-1236(81)90049-5
[25] Rothaus, O.S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42(1), 110-120 (1981) · Zbl 0471.58025 · doi:10.1016/0022-1236(81)90050-1
[26] Rothaus, O.S.: Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal. 65(3), 358-367 (1986) · Zbl 0589.58036 · doi:10.1016/0022-1236(86)90025-X
[27] Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong CD(K,8)\(CD(K,\infty )\)-spaces. Calc. Var. Partial Differ. Equ. 50(3-4), 831-846 (2014) · Zbl 1296.53088 · doi:10.1007/s00526-013-0657-x
[28] Saloff-Coste, L.: Sobolev inequalities in familiar and unfamiliar settings. Sobolev spaces in mathematics. I. Int. Math. Ser. (N. Y.), pp. 299-343 (2009) · Zbl 1165.26011
[29] Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K,8)\( \text{RCD}(K,\infty )\) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641-1661 (2014) · Zbl 1275.49087 · doi:10.3934/dcds.2014.34.1641
[30] Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[31] Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196 (1), 133-177 (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[32] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013
[33] Villani, C.: Optimal transport. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.