×

Global martingale solutions for a stochastic population cross-diffusion system. (English) Zbl 1422.35186

Summary: The existence of global nonnegative martingale solutions to a stochastic cross-diffusion system for an arbitrary but finite number of interacting population species is shown. The random influence of the environment is modeled by a multiplicative noise term. The diffusion matrix is generally neither symmetric nor positive definite, but it possesses a quadratic entropy structure. This structure allows us to work in a Hilbert space framework and to apply a stochastic Galerkin method. The existence proof is based on energy-type estimates, the tightness criterion of Z. Brzeźniak et al. [AMRX, Appl. Math. Res. Express 2013, No. 1, 1–33 (2013; Zbl 1272.60041)], and A. Jakubowski’s [Teor. Veroyatn. Primen. 42, No. 1, 209–216 (1997; Zbl 0923.60001)] generalization of the Skorokhod theorem. The nonnegativity is proved by an extension of Stampacchia’s truncation method due to M. D. Chekroun et al. [J. Differ. Equations 260, No. 3, 2926–2972 (2016; Zbl 1343.35247)].

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
92D25 Population dynamics (general)

References:

[1] Amann, H., Dynamic theory of quasilinear parabolic equations. II. Reaction – diffusion systems, Differential Integral Equations, 3, 13-75 (1990) · Zbl 0729.35062
[2] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, (Schmeisser, H. J.; Triebel, H., Function Spaces, Differential Operators and Nonlinear Analysis (1993), Teubner: Teubner Stuttgart), 9-126 · Zbl 0810.35037
[3] Badrikian, A., (Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques. Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, Lecture Notes Math., vol. 139 (1970), Springer: Springer Berlin) · Zbl 0209.48402
[4] Barbu, V.; Röckner, M., Variational solutions to nonlinear stochastic differential equations in Hilbert spaces, Stoch. Partial Diff. Eqs. Anal. Comput., 6, 500-524 (2018) · Zbl 1427.60115
[5] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer: Springer New York · Zbl 1220.46002
[6] Brzeźniak, Z.; Gatarek, D., Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Process. Appl., 84, 187-225 (1999) · Zbl 0996.60074
[7] Brzeźniak, Z.; Goldys, B.; Jegaraj, T., Weak solutions of a stochastic Landau-Lifshitz-Gilbert equation, Appl. Math. Res. Express., 2013, 1, 1-33 (2013) · Zbl 1272.60041
[8] Brzeźniak, Z.; Motyl, E., The existence of martingale solutions to the stochastic Boussinesq equations, Global Stoch. Anal., 1, 175-216 (2014) · Zbl 1296.35136
[9] Brzeźniak, Z.; Ondreját, M., Stochastic wave equations with values in Riemanninan manifolds. Stochastic partial differential equations and applications, Quad. Mat., 25, 65-97 (2010) · Zbl 1279.60077
[10] Cerrai, S., Stochastic reaction – diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, 125, 271-304 (2003) · Zbl 1027.60064
[11] Chekroun, M.; Park, E.; Temam, R., The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260, 2926-2972 (2016) · Zbl 1343.35247
[12] Chen, X.; Daus, E.; Jüngel, A., Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., 227, 715-747 (2018) · Zbl 1384.35135
[13] Chen, L.; Jüngel, A., Analysis of a multi-dimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36, 301-322 (2004) · Zbl 1082.35075
[14] Chojnowska-Michalik, A.; Goldys. Existence, B., uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces, Probab. Theory Related Fields, 102, 331-356 (1995) · Zbl 0859.60057
[15] Da Prato, D.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (2014), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1317.60077
[16] Debussche, A.; Martinová, M.; Vovelle, J., Degenerate parabolic stochastic differential equations: quasilinear case, Ann. Probab., 44, 1916-1955 (2016) · Zbl 1346.60094
[17] Denia, L.; Stoica, L., A general analytical result for non-linear SPDEs and applications, Electron. J. Probab., 9, 674-709 (2004) · Zbl 1067.60048
[18] Dubinskii, Y. A., Weak convergence for nonlinear elliptic and parabolic equations, Mat. Sb., 67, 109, 609-642 (1965), (in Russian) · Zbl 0145.35202
[19] Flandoli, F., A stochastic reaction – diffusion equations with multiplicative noise, Appl. Math. Lett., 4, 45-48 (1991) · Zbl 0725.60091
[20] Förster, A.; Michailov, A. S., Application of path integrals to stochastic reaction – diffusion equations, (Self-organization by Nonlinear Irreversible Processes (Kühlungsborn, 1985). Self-organization by Nonlinear Irreversible Processes (Kühlungsborn, 1985), Springer Ser. Synergetics, vol. 33 (1986), 89-94: 89-94 Berlin)
[21] Hofmanová, M.; Zhang, T., Quasilinear parabolic stochastic partial differential equations: Existence, uniqueness, Stochastic Process. Appl., 127, 3354-3371 (2017) · Zbl 1372.60091
[22] Jakubowski, A., The almost sure Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatn. Primen., 42, 209-216 (1997), English translation in Theory Probab. Appl. 42 (1997) 167-175 · Zbl 0923.60001
[23] Jüngel, A., (Entropy Methods for Diffusive Partial Differential Equations. Entropy Methods for Diffusive Partial Differential Equations, BCAM SpringerBriefs (2016)) · Zbl 1361.35002
[24] Jüngel, A.; Zamponi, N., Qualitative behavior of solutions to cross-diffusion systems from population dynamics, J. Math. Anal. Appl., 440, 794-809 (2016) · Zbl 1381.35078
[25] Kruse, R., (Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes Math., vol. 2093 (2014), Springer: Springer Cham) · Zbl 1285.60002
[26] Krylov, N. V., On Kolmogorov’s equations for finite dimensional diffusions, (Krylov, N. V.; Röckner, M.; Zabczyk, J., Stochastic PDEs and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998). Stochastic PDEs and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998), Lecture Notes Math., vol. 1715 (1999), Springer: Springer Berlin), 1-63 · Zbl 0943.60070
[27] C. Kuehn, A. Neamtu, Pathwise mild solutions for quasilinear stochastic partial differential equations, 2018 (submitted for publication). arXiv:1802.10016; C. Kuehn, A. Neamtu, Pathwise mild solutions for quasilinear stochastic partial differential equations, 2018 (submitted for publication). arXiv:1802.10016
[28] Kunze, M., Stochastic reaction – diffusion equations with Hölder continuous multiplicative noise, Stoch. Anal. Appl., 33, 331-355 (2015) · Zbl 1315.60078
[29] Liu, W.; Röckner, M., Local and global well-posedness of SPDE with generalized coercivity conditions, J. Differential Equations, 254, 725-755 (2013) · Zbl 1264.60046
[30] Manthey, R.; Maslowski, B., A random continuous model for two interacting populations, Appl. Math. Optim., 45, 213-236 (2002) · Zbl 0992.60063
[31] Mikulevicius, R.; Mikulevicius, B., Global \({}^L\)-solutions of stochastic Navier-Stokes equations, Ann. Probab., 33, 137-176 (2005) · Zbl 1098.60062
[32] Nguyen, P.; Pham, D., Stochastic systems of diffusion equations with polynomial reaction terms, Asymptot. Anal., 33, 125-161 (2016) · Zbl 1348.35270
[33] Pardoux, E., (Integrales Stochastiques Hilbertiennes. Integrales Stochastiques Hilbertiennes, Cahiers Mathématiques de Décision, vol. 7617 (1976), Université Paris Dauphine)
[34] Prévôt, C.; Röckner, M., (A Concise Course on Stochastic Partial Differential Equations. A Concise Course on Stochastic Partial Differential Equations, Lecture Notes Math., vol. 1905 (2007), Springer: Springer Berlin) · Zbl 1123.60001
[35] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theoret. Biol., 79, 83-99 (1979)
[36] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031
[37] Zamponi, N.; Jüngel, A., Analysis of degenerate cross-diffusion population models with volume filling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 1-29 (2017), (34 (2017) 789-792 (erratum)) · Zbl 1386.35167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.