×

A new approach to convergence analysis of linearized finite element method for nonlinear hyperbolic equation. (English) Zbl 1524.65605

Summary: We study a new way to convergence results for a nonlinear hyperbolic equation with bilinear element. Such equation is transformed into a parabolic system by setting the original solution \(u\) as \(u_t=q\). A linearized backward Euler finite element method (FEM) is introduced, and the splitting skill is exploited to get rid of the restriction on the ratio between \(h\) and \(\tau \). The boundedness of the solutions about the time-discrete system in \(H^2\)-norm is proved skillfully through temporal error. The spatial error is derived without the mesh-ratio, where some new techniques are utilized to deal with the problems caused by the new parabolic system. The final unconditional optimal error results of \(u\) and \(q\) are deduced at the same time. Finally, a numerical example is provided to support the theoretical analysis. Here \(h\) is the subdivision parameter, and \(\tau\) is the time step.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L72 Second-order quasilinear hyperbolic equations
35K51 Initial-boundary value problems for second-order parabolic systems

References:

[1] Chen, C., Liu, W.: A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations. J. Comput. Appl. Math. 233(11), 2975-2984 (2010) · Zbl 1190.65150
[2] Rincon, M., Quintino, N.: Numerical analysis and simulation for a nonlinear wave equation. J. Comput. Appl. Math. 296, 247-264 (2016) · Zbl 1331.65142
[3] Shi, D., Li, Z.: Superconvergence analysis of the finite element method for nonlinear hyperbolic equations with nonlinear boundary condition. Appl. Math. J. Chin. Univ. Ser. A 23(4), 455-462 (2008) · Zbl 1199.65317
[4] Lai, X., Yuan, Y.: Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems. Comput. Math. Appl. 57(3), 384-403 (2009) · Zbl 1165.65391
[5] Zhou, Z., Wang, W., Chen, H.: An \(H1H^1\)-Galerkin expanded mixed finite element approximation of second-order nonlinear hyperbolic equations. Abstr. Appl. Anal. 2013, Article ID 657952 (2013) · Zbl 1470.65170
[6] Chen, Y., Huang, Y.: The full-discrete mixed finite element methods for nonlinear hyperbolic equations. Commun. Nonlinear Sci. Numer. Simul. 3(3), 152-155 (1998) · Zbl 0918.65067
[7] Shi, D., Yan, F., Wang, J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274(1), 182-194 (2016) · Zbl 1410.65368
[8] Shi, D., Wang, J., Yan, F.: Unconditional superconvergence analysis of an \(H1H^1\)-Galerkin mixed finite element method for nonlinear Sobolev equations. Numer. Methods Partial Differ. Equ. 34(1), 145-166 (2018) · Zbl 1390.65120
[9] Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959-1977 (2013) · Zbl 1311.76067
[10] Wang, J.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390-407 (2014) · Zbl 1306.65257
[11] Wang, J., Si, Z., Sun, W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52(6), 3000-3020 (2013) · Zbl 1433.65315
[12] Gao, H.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58(3), 627-647 (2014) · Zbl 1305.65200
[13] Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933-954 (2014) · Zbl 1298.65160
[14] Gao, H.: Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66(2), 504-527 (2016) · Zbl 1364.65180
[15] Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134(1), 139-161 (2016) · Zbl 1346.76073
[16] Shi, D., Wang, J.: Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput. 72(3), 1093-1118 (2017) · Zbl 1407.65162
[17] Shi, D., Wang, J., Yan, F.: Unconditional superconvergence analysis for nonlinear parabolic equation with EQ1rot \(EQ_1^{\text{rot}}\) nonconforming finite element. J. Sci. Comput. 70(1), 85-111 (2017) · Zbl 1368.65162
[18] Shi, D., Wang, J.: Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation. Appl. Math. Comput. 294, 216-226 (2017) · Zbl 1411.65133
[19] Shi, D., Wang, J.: Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element. Appl. Math. Comput. 305, 1-16 (2017) · Zbl 1411.65134
[20] Shi, D., Wang, J.: Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations. Comput. Math. Appl. 74(4), 634-651 (2017) · Zbl 1384.65062
[21] Jung, C.Y., Park, E., Temam, R.: Boundary layer analysis of nonlinear reaction – diffusion equations in a smooth domain. Adv. Nonlinear Anal. 6(3), 277-300 (2017) · Zbl 1368.35023
[22] Grabowski, P.: Small-gain theorem for a class of abstract parabolic systems. Opusc. Math. 38(5), 651-680 (2018) · Zbl 1403.49030
[23] Strani, M.: Semigroup estimates and fast – slow dynamics in parabolic – hyperbolic systems. Adv. Nonlinear Anal. 7(1), 117-138 (2018) · Zbl 1383.35036
[24] Shi, D., Pei, L.: Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Appl. Math. Comput. 219, 9447-9460 (2013) · Zbl 1288.65145
[25] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)
[26] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer, Berlin (2000) · Zbl 1105.65102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.