×

Ductile damage modelling of heterogeneous materials using a two-scale computational approach. (English) Zbl 1441.74021

Summary: The paper presents a new two-scale methodology for modelling of damage in ductile heterogeneous materials employing homogenization approach over the two microstructural models. The first microstructural model comprises elastoplastic behaviour without softening, while only microstructural softening is homogenized in the second model. The scale transition of the state variables is based on the first-order computational homogenization scheme. The microstructural damage response is governed by the nonlocal variable embedded into the gradient elastoplastic formulation using the implicit localization approach. The averaging computation over the microstructural softening zones is driven by the damage variable and the local equivalent strain. Therein discretization is performed by using the mixed finite element formulation including the nonlocal equivalent plastic strain interpolation, while the standard displacement based finite elements, employing the simple constitutive relation with damage variable, are used at the macrolevel. The capability of modelling material damage responses at both the micro and macroscale is demonstrated by the benchmark examples.

MSC:

74A45 Theories of fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics

Software:

ABAQUS/Standard
Full Text: DOI

References:

[1] Perić, D.; de Souza Neto, E. A.; Feijóo, R. A.; Partovi, M.; Molina, A. J.C., On micro-to- macro transitions for multi-scale analysis of non-linear heterogeneous materials: Unified variational basis and finite element implementation, Internat. J. Numer. Methods Engrg., 87, 149-170 (2011) · Zbl 1242.74087
[2] Brekelmans, W. A.M.; Geers, M. G.D.; Kouznetsova, V. G., Computational homogenisation for non-linear heterogeneous solids, (Multiscale Model. Solid Mech. (2009)), 1-42 · Zbl 1296.74088
[3] Kouznetsova, V. G.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., 193, 5525-5550 (2004), http://www.sciencedirect.com/science/article/pii/S0045782504002853 · Zbl 1112.74469
[4] Nguyen, V. D.; Becker, G.; Noels, L., Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous Galerkin formulation, Comput. Methods Appl. Mech. Engrg., 260, 63-77 (2013) · Zbl 1286.74083
[5] Lesičar, T.; Tonković, Z.; Sorić, J., Two-scale computational approach using strain gradient theory at microlevel, Int. J. Mech. Sci., 126 (2017)
[6] Wu, T.; Temizer, İ.; Wriggers, P., Computational thermal homogenization of concrete, Cem. Concr. Compos., 35, 59-70 (2013), http://www.sciencedirect.com/science/article/pii/S0958946512001904
[7] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Engrg., 192, 559-591 (2003), http://www.sciencedirect.com/science/article/pii/S0045782502005649 · Zbl 1091.74530
[8] Gitman, I.; Askes, H.; Aifantis, E., The representative volume size in static and dynamic micro-macro transitions, Int. J. Fract., 135, L3-L9 (2005) · Zbl 1196.74167
[9] Gitman, I. M.; Gitman, M. B.; Askes, H., Quantification of stochastically stable representative volumes for random heterogeneous materials, Arch. Appl. Mech., 75, 79-92 (2006) · Zbl 1119.74342
[10] Graham, S.; Yang, N., Representative volumes of materials based on microstructural statistics, Scr. Mater., 48, 269-274 (2003)
[11] Gitman, I. M.; Askes, H.; Sluys, L. J., Representative volume: Existence and size determination, Eng. Fract. Mech., 74, 2518-2534 (2007)
[12] Gitman, I. M.; Askes, H.; Sluys, L. J., Coupled-volume multi-scale modelling of quasi-brittle material, Eur. J. Mech. A Solids, 27, 302-327 (2008) · Zbl 1154.74377
[13] Belytschko, T.; Loehnert, S.; Song, J.-H., Multiscale aggregating discontinuities: A method for circumventing loss of material stability, Internat. J. Numer. Methods Engrg., 73, 869-894 (2008) · Zbl 1195.74008
[14] Hettich, T.; Hund, A.; Ramm, E., Modeling of failure in composites by X-FEM and level sets within a multiscale framework, Comput. Methods Appl. Mech. Engrg., 197, 414-424 (2008) · Zbl 1169.74543
[15] Matouš, K.; Kulkarni, M. G.; Geubelle, P. H., Multiscale cohesive failure modeling of heterogeneous adhesives, J. Mech. Phys. Solids, 56, 1511-1533 (2008) · Zbl 1171.74433
[16] Massart, T. J.; Peerlings, R. H.J.; Geers, M. G.D., An enhanced multi-scale approach for masonry wall computations with localization of damage, Internat. J. Numer. Methods Engrg., 69, 1022-1059 (2007) · Zbl 1194.74283
[17] Bosco, E.; Kouznetsova, V. G.; Coenen, E. W.C.; Geers, M. G.D.; Salvadori, A., A multiscale framework for localizing microstructures towards the onset of macroscopic discontinuity, Comput. Mech., 54, 299-319 (2014) · Zbl 1398.74308
[18] Verhoosel, C. V.; Remmers, J. J.C.; Gutiérrez, M. A.; de Borst, R., Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, Internat. J. Numer. Methods Engrg., 83, 1155-1179 (2010) · Zbl 1197.74139
[19] Sluys, L. J.; Nguyen, V. P.; Stroeven, M., Multiscale continuos and discountinuous modeling of heterogeneous materials: A review on recent developments, J. Multiscale Model, 03, 229-270 (2011)
[20] Phu Nguyen, V.; Lloberas-Valls, O.; Stroeven, M.; Johannes Sluys, L., On the existence of representative volumes for softening quasi-brittle materials - A failure zone averaging scheme, Comput. Methods Appl. Mech. Engrg., 199, 3028-3038 (2010) · Zbl 1231.74372
[21] Sánchez, P. J.; Blanco, P. J.; Huespe, A. E.; Feijóo, R. A., Failure-oriented multi-scale variational formulation: Micro-structures with nucleation and evolution of softening bands, Comput. Methods Appl. Mech. Engrg., 257, 221-247 (2013) · Zbl 1286.74009
[22] Toro, S.; Sánchez, P. J.; Blanco, P. J.; de Souza Neto, E. A.; Huespe, A. E.; Feijóo, R. A., Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales, Int. J. Plast., 76, 75-110 (2016)
[23] Ibrahimbegović, A.; Markovič, D., Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures, Comput. Methods Appl. Mech. Engrg., 192, 3089-3107 (2003) · Zbl 1054.74730
[24] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017-1040 (2015) · Zbl 1329.74018
[25] Benedetti, I.; Aliabadi, M. H., Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture, Comput. Methods Appl. Mech. Engrg., 289, 429-453 (2015) · Zbl 1423.74196
[26] Xiang, M.; Chen, J., Numerical simulation of ductile fracture based on mean field homogenization method: Modeling and implementation, Eng. Fract. Mech., 152, 147-161 (2016)
[27] Tchalla, A.; Azoti, W. L.; Koutsawa, Y.; Makradi, A.; Belouettar, S.; Zahrouni, H., Incremental mean-fields micromechanics scheme for non-linear response of ductile damaged composite materials, Composites B, 69, 169-180 (2015)
[28] Ghosh, S.; Bai, J.; Paquet, D., Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities, J. Mech. Phys. Solids, 57, 1017-1044 (2009) · Zbl 1173.74313
[29] Fernandino, D. O.; Cisilino, A. P.; Toro, S.; Sanchez, P. J., Multi-scale analysis of the early damage mechanics of ferritized ductile iron, Int. J. Fract., 207, 1-26 (2017)
[30] Le Corre, V.; Brusselle-Dupend, N.; Moreaud, M., Numerical modeling of the effective ductile damage of macroporous alumina, Mech. Mater., 114, 161-171 (2017)
[31] Geers, M. G.D.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010) · Zbl 1402.74107
[32] Matouš, K.; Geers, M. G.D.; Kouznetsova, V. G.; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192-220 (2017)
[33] Hafner, S.; Luther, T.; Unger, J.; Eckardt, S.; Konke, C., Multiscale simulation methods in damage prediction of brittle and ductile materials, Int. J. Multiscale Comput. Eng., 8, 17-36 (2010)
[34] Pijaudier-Cabot, G.; Bazant, Z. P., Nonlocal damage theory, J. Eng. Mech., 113, 1512-1533 (1987)
[35] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, Internat. J. Engrg. Sci., 30, 1279-1299 (1992) · Zbl 0769.73058
[36] Aifantis, E. C., The physics of plastic deformation, Int. J. Plast., 3, 211-247 (1987) · Zbl 0616.73106
[37] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; Geers, M. G.D., Gradient-enhanced damage modelling of concrete fracture, Mech. Cohes. Frict. Mater., 3, 323-342 (1998)
[38] Peerlings, R. H.J.; De Borst, R.; Brekelmans, W. A.M.; De Vree, J. H.P., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 3391-3403 (1996) · Zbl 0882.73057
[39] Engelen, R. A.B.; Geers, M. G.D.; Baaijens, F. P.T., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour, Int. J. Plast., 19, 403-433 (2003) · Zbl 1090.74519
[40] Engelen, R. A.B.; Geers, M. G.D.; Baaijens, F. P.T., Gradient-enhanced ductile damage for the modeling of plastic deformation in softening materials, Eur. Congr. Comput. Methods Appl. Sci. Eng. (2000)
[41] Geers, M. G.D.; Ubachs, R. L.J. M.; Engelen, R. A.B., Strongly non-local gradient-enhanced finite strain elastoplasticity, Internat. J. Numer. Methods Engrg., 56, 2039-2068 (2003) · Zbl 1038.74527
[42] De Borst, R.; Mühlhaus, H.-B., Gradient-dependent plasticity: Formulation and algorithmic aspects, Internat. J. Numer. Methods Engrg., 35, 521-539 (1992) · Zbl 0768.73019
[43] Mühlhaus, H. B.; Alfantis, E. C., A variational principle for gradient plasticity, Int. J. Solids Struct., 28, 845-857 (1991) · Zbl 0749.73029
[44] De Borst, R.; Pamin, J., Some novel developments in finite element procedures for gradient-dependent plasticity, Internat. J. Numer. Methods Engrg., 39, 2477-2505 (1996) · Zbl 0885.73074
[45] Poh, L. H.; Sun, G., Localizing gradient damage model with decreasing interactions, Internat. J. Numer. Methods Engrg., 110, 503-522 (2017)
[46] Putar, F.; Sorić, J.; Lesičar, T.; Tonković, Z., Damage modeling employing strain gradient continuum theory, Int. J. Solids Struct., 120 (2017)
[47] ABAQUS, ABAQUS/Standard, ABAQUS (2014)
[48] Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity, Comput. Methods Appl. Mech. Engrg., 134, 223-240 (1996) · Zbl 0892.73012
[49] Tchalla, A.; Belouettar, S.; Makradi, A.; Zahrouni, H., An ABAQUS toolbox for multiscale finite element computation, Composites B, 52, 323-333 (2013)
[50] Yuan, Z.; Fish, J., Toward realization of computational homogenization in practice, Internat. J. Numer. Methods Engrg., 73, 361-380 (2008) · Zbl 1159.74044
[51] Smit, R. J.M.; Brekelmans, W. A.M.; Meijer, H. E.H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Comput. Methods Appl. Mech. Engrg., 155, 181-192 (1998) · Zbl 0967.74069
[52] Feyel, F.; Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 309-330 (2000) · Zbl 0993.74062
[53] Luscher, D. J.; McDowell, D. L.; Bronkhorst, C. A., A second gradient theoretical framework for hierarchical multiscale modeling of materials, Int. J. Plast., 26, 1248-1275 (2010) · Zbl 1436.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.