×

Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics. (English) Zbl 1461.74006

Summary: The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent \(J_{2}\) plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

MSC:

74A60 Micromechanical theories
74C20 Large-strain, rate-dependent theories of plasticity
74E15 Crystalline structure
74S05 Finite element methods applied to problems in solid mechanics

Software:

Albany; Trilinos

References:

[1] Abraham DP, Alstetter CJ (1995) Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall Mater Trans A 26:2859-2871 · doi:10.1007/BF02669644
[2] Alleman CN et al (2015) Distribution-enhanced homogenization framework and model for heterogeneous elasto-plastic problems. J Mech Phys Solids 85:176-202 · Zbl 1443.74249 · doi:10.1016/j.jmps.2015.09.012
[3] Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35:737-766 · Zbl 0784.73085 · doi:10.1002/nme.1620350408
[4] Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int J Plast 9:749-782 · Zbl 0791.73026 · doi:10.1016/0749-6419(93)90036-P
[5] Bažant ZP (2010) Can multiscale-multiphysics methods predict softening damage and structural failure? Int J Multiscale Comput Eng 8:61-67 · doi:10.1615/IntJMultCompEng.v8.i1.50
[6] Belgacem FB (1999) The Mortar finite element method with Lagrange multipliers. Numer Math 84(2):173-197 · Zbl 0944.65114 · doi:10.1007/s002110050468
[7] Belytschko T, Loehnert S, Song J-H (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73:869-894 · Zbl 1195.74008 · doi:10.1002/nme.2156
[8] Borrel M, Halpern L, Ryan J (2011) Euler/Navier-Stokes couplings for multiscale aeroacoustic problems. In: 20th AIAA computational fluid dynamics conference, Honolulu, Hawaii 2011-3047 (June 2011) · Zbl 1398.74471
[9] Coenen EWC, Kouznetsova Varvara G, Geers Marc GD (2012) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90(1):1-21 · Zbl 1242.74083 · doi:10.1002/nme.3298
[10] Daniel P, Piyush D, Somnath G (2011) Dual-stage nested homogenization for rate-dependent anisotropic elasto-plasticity model of dendritic cast aluminum alloys. Int J Plast 27(10):1677-1701 ISSN: 07496419 · Zbl 1419.74212 · doi:10.1016/j.ijplas.2011.02.002
[11] Borst, R.; Stein, E. (ed.); Borst, R. (ed.); Hughes, TJR (ed.), Damage, material instabilities, and failure (2004), New York
[12] Demeshko I et al (2016) Towards performance-portability of the Albany finite element analysis code using the Kokkos library. Int High Perform Comput Appl (submitted) · Zbl 1434.74037
[13] Di Leo CV, Anand L (2013) Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. Int J Plast 43:42-69 · doi:10.1016/j.ijplas.2012.11.005
[14] Dingreville R et al (2010) The effect of microstructural representation on simulations of microplastic ratcheting. Int J Plast 26:617-633 · Zbl 1434.74037 · doi:10.1016/j.ijplas.2009.09.004
[15] Engel M, Griebel M (2005) Flow simulation on moving boundary-fitted grids and application to fluid-structure interaction problems. Int J Numer Methods Fluids 50(4):437-468 · Zbl 1320.76079 · doi:10.1002/fld.1067
[16] Farhat C et al (2001) FETI-DP: a dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523-1544 · Zbl 1008.74076 · doi:10.1002/nme.76
[17] Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3):309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[18] Hadjiconstantinou N, Patera A (1997) Heterogeneous atomistic-continuum representations for dense fluid systems. Int J Mod Phys C 8(4):967-976 · doi:10.1142/S0129183197000837
[19] Heroux M (2003) An overview of trilinos. Tech. rep. SAND2003-2937. Sandia National Laboratory · Zbl 1419.74212
[20] Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357-372 · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[21] Hill R, Rice JR (1972) Constitutive analysis of elastic plastic crystals at arbitrary strain. J Mech Phys Solids 20:401-413 · Zbl 0254.73031 · doi:10.1016/0022-5096(72)90017-8
[22] Holm EA, Battaile CC (2001) The computer simulation of microstructural evolution. JOM 53(9):20-23 · doi:10.1007/s11837-001-0063-2
[23] Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A 348:101-127 · Zbl 0319.73059 · doi:10.1098/rspa.1976.0027
[24] Karlson KN et al (2016) Sandia fracture challenge 2: Sandia California’s modeling approach. Int J Fract 198:179-195 · doi:10.1007/s10704-016-0090-1
[25] Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17-31 · doi:10.1016/j.ijsolstr.2014.03.037
[26] Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37-48 · Zbl 1005.74018 · doi:10.1007/s004660000212
[27] Lee EH (1969) Elastic-plastic deformation at finite strains. Appl Mech 36:1-6 · Zbl 0179.55603 · doi:10.1115/1.3564580
[28] Lim H et al (2013) Application of generalized non-Schmid yield law to low temperature plasticity in BCC transition metals. Model Simul Mater Sci Eng 21:045015 · doi:10.1088/0965-0393/21/4/045015
[29] Lim H et al (2014) Grain-scale experimental validation of crystal plasticity finite element simulations of tantalum oligocrystals. Int J Plast 60:1-18 · doi:10.1016/j.ijplas.2014.05.004
[30] Matous K, Maniatty AM (2004) Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations. Int J Numer Methods Eng 60:2313-2333 · Zbl 1075.74658 · doi:10.1002/nme.1045
[31] Morris PR (1970) Elastic constants of polycrystals. Int J Eng Sci 8(2):49-61 · doi:10.1016/0020-7225(70)90014-5
[32] Mota A, Tezaur I, Alleman C (2017) The Schwarz alternating method in solid mechanics. Comput Methods Appl Mech Eng 319:19-51 · Zbl 1439.74450
[33] Mullner C et al (1994) Brittle fracture in austenitic steel. Acta Metall Mater 42:2211-2217 · doi:10.1016/0956-7151(94)90300-X
[34] Nibur KA et al (2009) The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel. Acta Mater 57:3795-3809 · doi:10.1016/j.actamat.2009.04.027
[35] Pandurangan V, Li H, Ng T (2011) A concurrent multiscale method based on the alternating Schwarz scheme for coupling atomic and continuum scaled with first-order compatibility. Comput Mech 47:1-16 · Zbl 1398.74471 · doi:10.1007/s00466-010-0528-7
[36] Parks M, Bochev P, Lehoucq R (2008) Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model Simul 7(1):362-380 · Zbl 1160.65343 · doi:10.1137/070682848
[37] Pawlowski RP, Phipps ET, Salinger AG (2012) Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, part I: template-based generic programming. Sci Program 20:197-219
[38] Pawlowski RP, Phipps ET, Salinger AG (2012) Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, part II: application to partial differential equations. Sci Program 20:327-345
[39] Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30:1087-1119 · doi:10.1016/0001-6160(82)90005-0
[40] Rice JR (1971) Inelastic constitutive relations for solids, an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19:443-455 · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[41] Rodgers TM et al (2016) Predicting mesoscale microstructural evolution in electron beam welding. JOM 68(5):1419-1426 · doi:10.1007/s11837-016-1863-8
[42] Ryan J, Halpern L, Borrel M (2012) Domain decomposition vs. overset Chimera grid approaches for coupling CFD and CAA. In: 7th international conference on computational fluid dynamics, Big Island, Hawaii ICCFD7-1205 (July 2012) · Zbl 1120.74367
[43] Salinger A (2016) Albany: using agile components to develop a flexible, generic multiphysics analysis code. Int J Multiscale Comput Eng 14:415-438 · doi:10.1615/IntJMultCompEng.2016017040
[44] San Marchi C et al (2011) Hydrogen-assisted deformation and fracture of austenitic stainless steels. In: 2nd international conference engineering against fracture (ICEAF II), Mykonos, Greece (2011)
[45] Schwarz H (1870) Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschriftder Naturforschenden Gesellschaft in Zurich 15:272-286
[46] Simo JC, Hughes TJR (1997) Computational inelasticity. Springer, New York · Zbl 0934.74003
[47] Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98:41-104 · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[48] Sun W, Ostien JT, Salinger AG (2013) A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain. Int J Numer Anal Methods Geomech 37:2755-2788 · doi:10.1002/nag.2104
[49] Taha A, Sofronis P (2001) A micromechanics approach to the study of hydrogen transport and embrittlement. Eng Fract Mech 68:803-837 · doi:10.1016/S0013-7944(00)00126-0
[50] Werder T, Walther J, Koumoutsakos P (2005) Hybrid atomistic-continuum method for the simulation of dense fluid flows. J Comput Phys 205:373-390 · Zbl 1087.76542 · doi:10.1016/j.jcp.2004.11.019
[51] Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermomechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54:401-424 · Zbl 1120.74367 · doi:10.1016/j.jmps.2005.08.010
[52] Zöllner D (2014) A new point of view to determine the simulation temperature for the Potts model simulation of grain growth. Comput Mater Sci 86:99-107 · doi:10.1016/j.commatsci.2014.01.044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.