×

Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. (English) Zbl 1311.74109

Summary: In this paper a method is presented for the construction of two- and three-dimensional statistically similar representative volume elements (SSRVEs) that may be used in computational two-scale calculations. These SSRVEs are obtained by minimizing a least-square functional defined in terms of deviations of statistical measures describing the microstructure morphology and mechanical macroscopic quantities computed for a random target microstructure and for the SSRVE. It is shown that such SSRVEs serve as lower bounds in a statistical sense with respect to the difference of microstructure morphology. Moreover, an upper bound is defined by the maximum of the least-square functional. A staggered optimization procedure is proposed enabling a more efficient construction of SSRVEs. In an inner optimization problem we ensure that the statistical similarity of the microstructure morphology in the SSRVE compared with a target microstructure is as high as possible. Then, in an outer optimization problem we analyze mechanical stress-strain curves. As an example for the proposed method two- and three-dimensional SSRVEs are constructed for real microstructure data of a dual-phase steel. By comparing their mechanical response with the one of the real microstructure the performance of the method is documented. It turns out that the quality of the SSRVEs improves and converges to some limit value as the microstructure complexity of the SSRVE increases. This converging behavior gives reason to expect an optimal SSRVE at the limit for a chosen type of microstructure parameterization and set of statistical measures.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

mystic
Full Text: DOI

References:

[1] Ambrozinski M, Bzowski K, Rauch L, Pietrzyk M (2012) Application of statistically similar representative volume element in numerical simulations of crash box stamping. Arch Civil Mech Eng 12:126-132 · doi:10.1016/j.acme.2012.04.011
[2] Balzani D, Schröder J, Brands D \[(2009) \text{ FE }{}^2\] FE2-simulation of microheterogeneous steels based on statistically similar RVE’s. In: Proceedings of the IUTAM symposium on variational concepts with applications to the mechanics of materials, 22-26 Sept 2008, Bochum, Germany
[3] Balzani D, Brands D, Schröder J, Carstensen C (2010) Sensitivity analysis of statistical measures for the reconstruction of microstructures based on the minimization of generalized least-square functionals. Technische Mechanik 30:297-315
[4] Balzani, D.; Brands, D.; Schröder, J.; Schröder, J. (ed.); Hackl, K. (ed.), Construction of statistically similar representative volume elements (2013), Vienna · Zbl 1291.74189
[5] Beran M (1968) Statistical continuum theories. Wiley, New York · Zbl 0162.58902
[6] Brown W (1955) Solid mixture permittivities. J Chem Phys 23:1514-1517 · doi:10.1063/1.1742339
[7] Efstathiou C, Sehitoglu H, Lambros J (2010) Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities. Int J Plast 26:93-106 · Zbl 1426.74004 · doi:10.1016/j.ijplas.2009.04.006
[8] Eisenlohr P, Diehl M, Lebensohn R, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37-53 · doi:10.1016/j.ijplas.2012.09.012
[9] Exner H, Hougardy H (1986) Einführung in die quantitative Gefügeanalyse. Deutsche Gesellschaft für Metallkunde · Zbl 0747.73020
[10] Feyel F (1999) Multiscale \[\text{ FE }{}^2\] FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16:344-354 · doi:10.1016/S0927-0256(99)00077-4
[11] Feyel F, Chaboche J \[(2000) \text{ Fe }{}^2\] Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[12] Fish J, Shek K (1999) Finite deformation plasticity for composite structures: computational models and adaptive strategies. Comput Methods Appl Mech Eng 172:145-174 · Zbl 0956.74009 · doi:10.1016/S0045-7825(98)00228-X
[13] Geers M, Kouznetsova V, Brekelmans W (2003) Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng 1:371-386 · doi:10.1615/IntJMultCompEng.v1.i4.40
[14] Golanski D, Terada K, Kikuchi N (1997) Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Comput Mech 19:188-201 · doi:10.1007/s004660050168
[15] Gross D, Seelig T (2006) Fracture mechanics. Springer, Berlin · Zbl 1110.74001
[16] Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357-372 · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[17] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647-3679 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[18] Klinkel S (2000) Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. Dissertation thesis, Institut für Baustatik, Universität Karlsruhe
[19] Kröner E (1960) Allgemeine Kontinuumstheorie der Versetzung und Eigenspannung. Arch Ration Mech Anal 4:273-334 · Zbl 0090.17601 · doi:10.1007/BF00281393
[20] Lee E (1969) Elasto-plastic deformation at finite strains. J Appl Mech 36:1-6 · Zbl 0179.55603 · doi:10.1115/1.3564580
[21] Lee S, Lebensohn R, Rollett A (2011) Modeling the viscoplastic micromechanical response of two-phase materials using fast fourier transforms. Int J Plast 27:707-727 · Zbl 1405.74012 · doi:10.1016/j.ijplas.2010.09.002
[22] Li D, Tschopp M, Khaleel M, Sun X (2012) Comparison of reconstructed spatial microstructure images using different statistical descriptors. Comput Mater Sci 51:437-444 · doi:10.1016/j.commatsci.2011.07.056
[23] Lu B, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45:922-929 · doi:10.1103/PhysRevA.45.922
[24] McKerns M, Hung P, Aivazis M (2009) Mystic: a simple model-independent inversion framework. http://www.tracmysticcacrcaltechedu/project/mystic
[25] McKerns M, Strand L, Sullivan T, Fang A, Aivazis M (2011) Building a framework for predictive science. In: Proceedings of the 10th python in science conference. http://arxiv.org/pdf/12021056 · Zbl 0954.74079
[26] Miehe C (1993) Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und Numerische Implementation. Habilitation thesis, Universität Hannover, Institut für Baumechanik und Numerische Mechanik, Report No F93/1
[27] Miehe C, Stein E (1992) A canonical model of multiplicative elasto-plasticity formulation and aspects of the numerical implementation. Eur J Mech A 11:25-43
[28] Miehe C, Schotte J, Schröder J (1999a) Computational micro-macro-transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16:372-382 · doi:10.1016/S0927-0256(99)00080-4
[29] Miehe C, Schröder J, Schotte J (1999b) Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387-418 · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[30] Milton G (2002) The theory of composites. Cambridge University Press, Cambridge · Zbl 0993.74002 · doi:10.1017/CBO9780511613357
[31] Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69-94 · Zbl 0954.74079 · doi:10.1016/S0045-7825(97)00218-1
[32] Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. Wiley, Chichester · Zbl 0960.62129
[33] Ohser J, Schladitz K (2006) Image processing and analysis. Clarendon Press, Oxford · Zbl 1165.94306
[34] Paquet D, Dondeti P, Ghosh S (2011) Dual-stage nested homogenization for rate-dependent anisotropic elasto-plasticity model of dendritic cast aluminum alloys. Int J Plast 27:1677-1701 · Zbl 1419.74212 · doi:10.1016/j.ijplas.2011.02.002
[35] Peric D, Owen D, Honnor M (1992) A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comput Methods Appl Mech Eng 94:35-61 · Zbl 0747.73020 · doi:10.1016/0045-7825(92)90156-E
[36] Piasecki R (2011) Microstructure reconstruction using entropic descriptors. Proc R Soc A 467:806-820 · Zbl 1209.82020 · doi:10.1098/rspa.2010.0296
[37] Povirk G (1995) Incorporation of microstructural information into models of two-phase materials. Acta Metall 43(8):3199-3206
[38] Ramazani A, Mukherjee K, Schwedt A, Goravanchi P, Prahl U, Bleck W (2013) Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast 43:128-152
[39] Rauch L, Pernach M, Bzowski K, Pietrzyk M (2011) On application of shape coefficients to creation of the statistically similar representative element of DP steels. Comput Methods Mater Sci 11:531-541
[40] Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Habilitation thesis, Bericht aus der Forschungsreihe des Institut für Mechanik (Bauwesen), Lehrstuhl I
[41] Schröder, J.; Schröder, J. (ed.); Hackl, K. (ed.), A numerical two-scale homogenization scheme: the FE \[^22\]-method (2013), Berlin
[42] Schröder J, Balzani D, Brands D (2011) Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Arch Appl Mech 81:975-997 · Zbl 1271.74056 · doi:10.1007/s00419-010-0462-3
[43] Simo J (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput Methods Appl Mech Eng 66:199-219 · Zbl 0611.73057 · doi:10.1016/0045-7825(88)90076-X
[44] Simo J (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99:61-112 · Zbl 0764.73089 · doi:10.1016/0045-7825(92)90123-2
[45] Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 96:133-171 · Zbl 0754.73042 · doi:10.1016/0045-7825(92)90129-8
[46] Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181-192 · Zbl 0967.74069 · doi:10.1016/S0045-7825(97)00139-4
[47] Swaminathan S, Ghosh S, Pagano N (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: Part I—Without damage. J Compos Mater 40:583-604 · doi:10.1177/0021998305055273
[48] Temizer I, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198:495-510 · Zbl 1228.74066 · doi:10.1016/j.cma.2008.08.018
[49] Torquato S (2002) Random heterogeneous materials. Microstructure and macroscopic properties. Springer, New York · Zbl 0988.74001 · doi:10.1007/978-1-4757-6355-3
[50] Trias D, Costa J, Turon A, Hurtado J (2006) Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers. Acta Mater 54:3471-3484 · doi:10.1016/j.actamat.2006.03.042
[51] Voce E (1955) A practical strain hardening function. Metallurgica 51:219-226
[52] Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoelastic solids. Comput Methods Appl Mech Eng 79:173-202 · Zbl 0731.73031 · doi:10.1016/0045-7825(90)90131-5
[53] Zaafarani N, Raabe D, Singh R, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863-1876 · doi:10.1016/j.actamat.2005.12.014
[54] Zeman J (2003) Analysis of composite materials with random microstructure. PhD thesis, University of Prague
[55] Zohdi T, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin · Zbl 1085.74001 · doi:10.1007/978-3-540-32360-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.