×

Event-triggered adaptive neural control for multiagent systems with deferred state constraints. (English) Zbl 1495.93053

Summary: This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints. A distributed event-triggered adaptive neural control approach is advanced. By virtue of a distributed sliding-mode estimator, the leader-following consensus control problem is converted into multiple simplified tracking control problems. Afterwards, a shifting function is utilized to transform the error variables such that the initial tracking condition can be totally unknown and the state constraints can be imposed at a specified time instant. Meanwhile, the deferred asymmetric time-varying full state constraints are addressed by a class of asymmetric barrier Lyapunov function. In order to reduce the burden of communication, a relative threshold event-triggered mechanism is incorporated into controller and Zeno behavior is excluded. Based on Lyapunov stability theorem, all closed-loop signals are proved to be semi-globally uniformly ultimately bounded. Finally, a practical simulation example is given to verify the presented control scheme.

MSC:

93C65 Discrete event control/observation systems
93D50 Consensus
93A13 Hierarchical systems
93C40 Adaptive control/observation systems
93A16 Multi-agent systems
Full Text: DOI

References:

[1] Zhang, T. Y.; You, B.; Liu, G. P., Motion coordination for a class of multi-agents via networked predictive control, Journal of Systems Science and Complexity, 33, 3, 622-639 (2020) · Zbl 1447.93013 · doi:10.1007/s11424-020-8122-3
[2] Yang, B.; Zhou, Q.; Cao, L., Event-triggered control for multi-agent systems with prescribed performance and full state constraints, Acta Automatica Sinica, 45, 8, 1527-1535 (2019) · Zbl 1449.93183
[3] Liang H J, Zhang L C, Sun Y H, et al., Containment control of semi-Markovian multiagent systems with switching topologies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, DOI: doi:10.1109/TSMC.2019.2946248.
[4] Dong S L, Chen G R, Liu M Q, et al., Cooperative neural-adaptive fault-tolerant output regulation for heterogeneous nonlinear uncertain multiagent systems with disturbance, SCIENCE CHINA Information Sciences, 2020, DOI: doi:10.1007/s11432-020-3122-6.
[5] Wu Y, Liang H J, Zhang Y H, et al., Cooperative adaptive dynamic surface control for a class of high-order stochastic nonlinear multiagent systems, IEEE Transactions on Cybernetics, 2020, DOI: doi:10.1109/TCYB.2020.2986332.
[6] Ren, H. R.; Karimi, H. R.; Lu, R. Q., Synchronization of network systems via aperiodic sampleddata control with constant delay and application to unmanned ground vehicles, IEEE Transactions on Industrial Electronics, 67, 6, 4980-4990 (2020) · doi:10.1109/TIE.2019.2928241
[7] Yang, L. Y.; Liu, S. J., Distributed stochastic source seeking for multiple vehicles over fixed topology, Journal of Systems Science and Complexity, 33, 3, 652-671 (2020) · Zbl 1447.93240 · doi:10.1007/s11424-020-8309-7
[8] Liang H J, Liu G L, Zhang H G, et al., Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties, IEEE Transactions on Neural Networks and Learning Systems, 2020, DOI: doi:10.1109/TNNLS.2020.3003950.
[9] Zhang, H. W.; Chen, J., Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches, International Journal of Robust and Nonlinear Control, 27, 1, 3-14 (2017) · Zbl 1353.93011 · doi:10.1002/rnc.3552
[10] Xiao, W. B.; Cao, L.; Li, H. Y., Observer-based adaptive consensus control for nonlinear multiagent systems with time-delay, SCIENCE CHINA Information Sciences, 63, 132202 (2020) · doi:10.1007/s11432-019-2678-2
[11] Li, H. Y.; Wu, Y.; Chen, M., Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm, IEEE Transactions on Cybernetics, 51, 3, 1163-1174 (2021) · doi:10.1109/TCYB.2020.2982168
[12] Fan, B.; Guo, S. L.; Peng, J. K., A consensus-based algorithm for power sharing and voltage regulation in DC microgrids, IEEE Transactions on Industrial Informatics, 16, 6, 3987-3996 (2020) · doi:10.1109/TII.2019.2941268
[13] Li, J. L.; Yang, Q. M.; Fan, B., Robust state/output-feedback control of coaxial-rotor MAVs based on adaptive NN approach, IEEE Transactions on Neural Networks and Learning Systems, 30, 12, 3547-3557 (2019) · doi:10.1109/TNNLS.2019.2911649
[14] Zhang M H, Jing X J, and Wang G, Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay, IEEE Transactions on Industrial Electronics, 2020, DOI: doi:10.1109/TIE.2020.3040667.
[15] Zhou, Q.; Zhao, S. Y.; Li, H. Y., Adaptive neural network tracking control for robotic manipulators with dead zone, IEEE Transactions on Neural Networks and Learning Systems, 30, 12, 3611-3620 (2019) · doi:10.1109/TNNLS.2018.2869375
[16] Song, Y. D.; Huang, X. C.; Wen, C. Y., Tracking control for a class of unknown nonsquare MIMO nonaffine systems: A deep-rooted information based robust adaptive approach, IEEE Transactions on Automatic Control, 61, 10, 3227-3233 (2016) · doi:10.1109/TAC.2015.2508741
[17] Pan Y N, Du P H, Xue H, et al., Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance, IEEE Transactions on Fuzzy Systems, 2020, DOI: doi:10.1109/TFUZZ.2020.2999746.
[18] Zhang M H and Jing X J, Adaptive neural network tracking control for double-pendulum tower crane systems with nonideal inputs, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, DOI: doi:10.1109/TSMC.2020.3048722.
[19] Liu, Q.; Leng, J. W.; Yan, D. X., Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system, Journal of Manufacturing Systems, 58, 52-64 (2021) · doi:10.1016/j.jmsy.2020.04.012
[20] Song, Y. D.; Huang, X. C.; Jia, Z. J., Dealing with the issues crucially related to the functionality and reliability of NN-associated control for nonlinear uncertain systems, IEEE Transactions on Neural Networks and Learning Systems, 28, 11, 2614-2625 (2017) · doi:10.1109/TNNLS.2016.2598616
[21] Chen, C. L P.; Ren, C. E.; Du, T., Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics, IEEE Transactions on Fuzzy Systems, 24, 4, 906-915 (2016) · doi:10.1109/TFUZZ.2015.2486817
[22] Lin G H, Li H Y, Ma H, et al., Human-in-the-loop consensus control for nonlinear multiagent systems with actuator faults, IEEE/CAA Journal of Automatica Sinica, 2020, DOI: doi:10.1109/JAS.2020.1003596.
[23] Liu Y, Yao D Y, Li H Y, et al., Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN, IEEE Transactions on Cybernetics, 2020, DOI: doi:10.1109/TCYB.2020.3044883.
[24] Wang, F.; Chen, B.; Lin, C., Distributed adaptive neural control for stochastic nonlinear multiagent systems, IEEE Transactions on Cybernetics, 47, 7, 1795-1803 (2016) · Zbl 1354.37051 · doi:10.1109/TCYB.2016.2623898
[25] Liu, Y. J.; Lu, S. M.; Li, D. J., Adaptive controller design-based ABLF for a class of nonlinear time-varying state constraint systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 7, 1546-1553 (2017) · doi:10.1109/TSMC.2016.2633007
[26] Fan, B.; Yang, Q. M.; Jagannathan, S., Output-constrained control of nonaffine multiagent systems with partially unknown control directions, IEEE Transactions on Automatic Control, 64, 9, 3936-3942 (2019) · Zbl 1482.93015 · doi:10.1109/TAC.2019.2892391
[27] Cao L, Ren H R, Meng W, et al., Distributed event triggering control for six-rotor UAV systems with asymmetric time-varying output constraints, SCIENCE CHINA Information Sciences, 2020, DOI: doi:10.1007/s11432-020-3128-2.
[28] Ren, H. R.; Lu, R. Q.; Xiong, J. L., Optimal filtered and smoothed estimators for discrete-time linear systems with multiple packet dropouts under Markovian communication constraints, IEEE Transactions on Cybernetics, 50, 9, 4169-4181 (2020) · doi:10.1109/TCYB.2019.2924485
[29] Wang, J.; Shi, L. R.; Guan, X. P., Semi-global leaderless consensus of linear multi-agent systems with actuator and communication constraints, Journal of Systems Science and Complexity, 33, 4, 882-902 (2020) · Zbl 1455.93185 · doi:10.1007/s11424-020-8366-y
[30] Su, Y. X.; Wang, Q. L.; Sun, C. Y., Self-triggered consensus control for linear multi-agent systems with input saturation, IEEE/CAA Journal of Automatica Sinica, 7, 1, 150-157 (2020) · doi:10.1109/JAS.2019.1911837
[31] Shen, D.; Xu, J. X., Distributed learning consensus for heterogenous high-order nonlinear multi-agent systems with output constraints, Automatica, 97, 64-72 (2018) · Zbl 1406.93031 · doi:10.1016/j.automatica.2018.07.030
[32] Shen, D.; Xu, J. X., Distributed adaptive iterative learning control for nonlinear multiagent systems with state constraints, International Journal of Adaptive Control and Signal Processing, 31, 12, 1779-1807 (2017) · Zbl 1383.93004 · doi:10.1002/acs.2799
[33] Meng, W. C.; Yang, Q. M.; Si, J., Consensus control of nonlinear multiagent systems with time-varying state constraints, IEEE Transactions on Cybernetics, 47, 8, 2110-2120 (2016) · doi:10.1109/TCYB.2016.2629268
[34] Yang, B.; Xiao, W. B.; Yin, H., Adaptive neural control for multiagent systems with asymmetric time-varying state constraints and input saturation, International Journal of Robust and Nonlinear Control, 30, 12, 4764-4778 (2020) · Zbl 1466.93092 · doi:10.1002/rnc.5004
[35] Nowzari, C.; Garcia, E.; Cortés, J., Event-triggered communication and control of networked systems for multi-agent consensus, Automatica, 105, 1-27 (2019) · Zbl 1429.93339 · doi:10.1016/j.automatica.2019.03.009
[36] Ma, H.; Li, H. Y.; Lu, R. Q., Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, SCIENCE CHINA Information Sciences, 63, 150212 (2020) · doi:10.1007/s11432-019-2680-1
[37] Zhao, Q. T.; Sun, J.; Bai, Y. Q., Dynamic event-triggered control for nonlinear systems: A small-gain approach, Journal of Systems Science and Complexity, 33, 4, 930-943 (2020) · Zbl 1455.93121 · doi:10.1007/s11424-020-9210-0
[38] Liang H J, Guo X Y, Pan Y N, et al., Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Transactions on Fuzzy Systems, 2020, DOI: doi:10.1109/TFUZZ.2020.2982618.
[39] Zhou Q, Wang W, Ma H, et al., Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input, IEEE Transactions on Fuzzy Systems, 2019, DOI: doi:10.1109/TFUZZ.2019.2961642.
[40] Yao, D. Y.; Li, H. Y.; Lu, R. Q., Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An event-triggered approach, IEEE Transactions on Cybernetics, 50, 9, 3892-3902 (2020) · doi:10.1109/TCYB.2019.2963087
[41] Yang Q L, Sun J, and Chen J, Output consensus for heterogeneous linear multiagent systems with a predictive event-triggered mechanism, IEEE Transactions on Cybernetics, 2019, DOI: doi:10.1109/TCYB.2019.2895044.
[42] Xu, Y.; Wu, Z. G., Distributed adaptive event-triggered fault-tolerant synchronization for multiagent systems, IEEE Transactions on Industrial Electronics, 68, 2, 1537-1547 (2021) · doi:10.1109/TIE.2020.2967739
[43] Xu, Y.; Fang, M.; Pan, Y. J., Event-triggered output synchronization for nonhomogeneous agent systems with periodic denial-of-service attacks, International Journal of Robust and Nonlinear Control, 31, 1851-1865 (2021) · Zbl 1526.93165 · doi:10.1002/rnc.5223
[44] Bai, W. W.; Li, T. S.; Tong, S. C., NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems, IEEE Transactions on Cybernetics, 50, 11, 4573-4584 (2020) · doi:10.1109/TCYB.2020.2963849
[45] Yang, C. G.; Ge, S. Z.; Xiang, C., Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach, IEEE Transactions on Neural Networks, 19, 11, 1873-1886 (2008) · doi:10.1109/TNN.2008.2003290
[46] Song, Y. D.; Zhou, S. Y., Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints, Automatica, 98, 314-322 (2018) · Zbl 1406.93172 · doi:10.1016/j.automatica.2018.09.032
[47] Cao, Y. C.; Ren, W.; Meng, Z. Y., Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Systems and Control Letters, 59, 9, 522-529 (2010) · Zbl 1207.93103 · doi:10.1016/j.sysconle.2010.06.002
[48] Chen, B.; Liu, X. P.; Liu, K. F., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45, 6, 1530-1535 (2009) · Zbl 1166.93341 · doi:10.1016/j.automatica.2009.02.025
[49] Xing, L. T.; Wen, C. Y.; Liu, Z. T., Event-triggered output feedback control for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 64, 1, 290-297 (2019) · Zbl 1423.93341 · doi:10.1109/TAC.2018.2823386
[50] Wang, W.; Tong, S. C., Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems, IEEE Transactions on Cybernetics, 48, 2, 522-531 (2018) · doi:10.1109/TCYB.2016.2645763
[51] Dong, G. W.; Li, H. Y.; Ma, H., Finite-time consensus tracking neural network FTC of multiagent systems, IEEE Transactions on Neural Networks and Learning Systems, 32, 2, 653-662 (2021) · doi:10.1109/TNNLS.2020.2978898
[52] Du P H, Pan Y N, Li H Y, et al., Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems, IEEE Transactions on Fuzzy Systems, 2020, DOI: doi:10.1109/TFUZZ.2020.2992632.
[53] Li, Q. B.; Guo, J.; Sun, C. Y., Finite-time synchronization for a class of dynamical complex networks with nonidentical nodes and uncertain disturbance, Journal of Systems Science and Complexity, 32, 3, 818-834 (2019) · Zbl 1414.93163 · doi:10.1007/s11424-018-8141-5
[54] Song, Y. D.; Wang, Y. J.; Holloway, J., Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83, 1, 243-251 (2017) · Zbl 1373.93136 · doi:10.1016/j.automatica.2017.06.008
[55] Dong G W, Cao L, Yao D Y, et al., Adaptive attitude control for multi-MUAV systems with output dead-zone and actuator fault, IEEE/CAA Journal of Automatica Sinica, 2020, DOI: doi:10.1109/JAS.2020.1003605.
[56] Song, Y. D.; Wang, Y. J.; Wen, C. Y., Adaptive fault-tolerant PI tracking control with guaranteed transient and steady-state performance, IEEE Transactions on Automatic Control, 62, 1, 481-487 (2017) · Zbl 1359.93233 · doi:10.1109/TAC.2016.2554362
[57] Huang Y B, He Y, An J Q, et al., Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems, IEEE Transactions on Automatic Control, 2020, DOI: doi:10.1109/TAC.2020.3013930. · Zbl 1467.93243
[58] Long, F.; Zhang, C. K.; Jiang, L., Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 4, 2457-2466 (2021) · doi:10.1109/TSMC.2019.2914367
[59] Zhang, C. K.; Long, F.; He, Y., A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113, 108764 (2020) · Zbl 1440.93144 · doi:10.1016/j.automatica.2019.108764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.