×

Taxis-driven complex patterns of a plankton model. (English) Zbl 07901148

MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Turing, A. M., The chemical basis of morphogenesis, Bull. Math. Biol., 52, 153-197, 1990 · doi:10.1007/BF02459572
[2] Lin, J.; Li, J.; Xu, R., Turing instability and pattern formation of a fractional Hopfield reaction-diffusion neural network with transmission delay, Nonlinear Anal.: Model. Contr., 27, 823-840, 2022 · Zbl 07586690 · doi:10.15388/namc.2022.27.27473
[3] Guo, L.; Shi, X.; Cao, J., Turing patterns of Gierer-Meinhardt model on complex networks, Nonlinear Dyn., 105, 899-909, 2021 · doi:10.1007/s11071-021-06618-6
[4] Kuznetsov, M.; Kolobov, A.; Polezhaev, A., Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo type before the onset of subcritical Turing bifurcation, Phys. Rev. E, 95, 052208, 2017 · doi:10.1103/PhysRevE.95.052208
[5] Brown, C.; Derks, G.; Heijster, P.; Lloyd, D. J. B., Analysing transitions from a Turing instability to large periodic patterns in a reaction-diffusion system, Nonlinearity, 36, 6839-6878, 2023 · Zbl 1528.34049 · doi:10.1088/1361-6544/ad043c
[6] Chen, M. X.; Srivastava, H. M., Stability of bifurcating solution of a predator-prey model, Chaos Solit. Fract., 168, 113153, 2023 · doi:10.1016/j.chaos.2023.113153
[7] Brooks, H. A.; Bressloff, P. C., A mechanism for Turing pattern formation with active and passive transport, SIAM J. Appl. Dyn. Syst., 15, 1823-1843, 2016 · Zbl 1347.92012 · doi:10.1137/16M1061205
[8] Xiang, Z.; Li, J.; You, P., Turing patterns with high-resolution formed without chemical reaction in thin-film solution of organic semiconductors, Nature Commun., 13, 7422, 2022 · doi:10.1038/s41467-022-35162-z
[9] Chen, M. X.; Wu, R. C.; Wang, X. H., Non-constant steady states and Hopf bifurcation of a species interaction model, Commun. Nonlinear Sci. Numer. Simul., 116, 106846, 2023 · Zbl 1501.92106 · doi:10.1016/j.cnsns.2022.106846
[10] Cheng, H.; Xiao, M.; Yu, W.; Rutkowski, L.; Cao, J., How to regulate pattern formations for malware propagation in cyber-physical systems, Chaos, 34, 3, 033136, 2024 · Zbl 1541.93126 · doi:10.1063/5.0176724
[11] Acharya, S.; Upadhyay, R. K.; Mondal, B., Exploring the complex dynamics of a diffusive epidemic model: Stability and bifurcation analysis, Chaos, 34, 2, 023115, 2024 · Zbl 07855187 · doi:10.1063/5.0159015
[12] Chattopadhayay, J.; Sarkar, R. R.; Mandal, S., Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling, J. Theor. Biol., 215, 333-344, 2002 · doi:10.1006/jtbi.2001.2510
[13] Han, R.; Dai, B., Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with nonmonotonic functional response, Int. J. Bifur. Chaos, 27, 1750088, 2017 · Zbl 1370.35256 · doi:10.1142/S0218127417500882
[14] Li, J.; Song, Y.; Wan, H., Dynamics analysis of a toxin-producing phytoplankton-zooplankton model with refuge, Math. Biosci. Eng., 14, 529-557, 2017 · Zbl 1362.92064
[15] Jia, D.; Zhang, T.; Yuan, S., Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, Int. J. Bifur. Chaos, 29, 1930011, 2019 · Zbl 1411.35257 · doi:10.1142/S0218127419300118
[16] Li, C. L., On global bifurcation for a cross-diffusion predator-prey system with prey-taxis, Comput. Math. Appl., 76, 1014-1025, 2018 · Zbl 1427.92078 · doi:10.1016/j.camwa.2018.05.037
[17] Khudhair, H. K.; Zhang, Y. Z.; Fukawa, N., Pattern selection in the Schnakenberg equations: From normal to anomalous diffusion, Numer. Meth. Part. Differ. Equ., 38, 1843-1860, 2022 · Zbl 1533.65196 · doi:10.1002/num.22842
[18] Zhang, L.; Tian, C. R., Turing pattern dynamics in an activator-inhibitor system with superdiffusion, Phys. Rev. E, 90, 062915, 2014 · doi:10.1103/PhysRevE.90.062915
[19] Chen, M. X.; Wu, R. C., Dynamics of a harvested predator-prey model with predator-taxis, Bull. Malay. Math. Sci. Soc., 46, 76, 2023 · Zbl 1511.35021 · doi:10.1007/s40840-023-01470-w
[20] Li, S.; Wu, J., Global bifurcation of coexistence states for a prey-predator model with prey-taxis/predator-taxis, Adv. Nonlinear Stud., 23, 20220060, 2023 · Zbl 1512.35249 · doi:10.1515/ans-2022-0060
[21] Mishra, P.; Wrzosek, D., The role of indirect prey-taxis and interference among predators in pattern formation, Math. Meth. Appl. Sci., 43, 10441-10461, 2020 · Zbl 1467.92242 · doi:10.1002/mma.6426
[22] Li, G. L.; Winkler, M., Nonnegative solutions to a doubly degenerate nutrient taxis system, Commun. Pure Appl. Anal., 21, 687-704, 2022 · Zbl 1483.35127 · doi:10.3934/cpaa.2021194
[23] Lee, J. M.; Hillen, T.; Lewis, M. A., Pattern formation in prey-taxis systems, J. Biol. Dyn., 3, 551-573, 2009 · Zbl 1315.92064 · doi:10.1080/17513750802716112
[24] Chakraborty, A.; Singh, M.; Lucy, D.; Ridland, P., Predator-prey model with prey-taxis and diffusion, Math. Comput. Model., 46, 482-498, 2007 · Zbl 1132.35395 · doi:10.1016/j.mcm.2006.10.010
[25] Rai, V.; Upadhyay, R. K.; Thakur, N. K., Complex population dynamics in heterogeneous environments: Effects of random and directed animal movements, Int. J. Nonlinear Sci. Numer. Simul., 13, 299-309, 2012 · Zbl 1401.92164 · doi:10.1515/ijnsns-2011-0115
[26] Chen, M. X.; Wu, R. C., Steady state bifurcation in Previte-Hoffman model, Int. J. Bifur. Chaos, 33, 2350020, 2023 · Zbl 07847292 · doi:10.1142/S0218127423500207
[27] Xing, J.; Zheng, P.; Pan, X., A quasilinear predator-prey model with indirect prey-taxis, Qual. Theor. Dyn. Syst., 20, 70, 2021 · Zbl 1472.35218 · doi:10.1007/s12346-021-00508-3
[28] Wang, X. L.; Wang, W. D.; Zhang, G. H., Global bifurcation of solutions for a predator-preymodel with prey-taxis, Math. Meth. Appl. Sci., 38, 431-443, 2015 · Zbl 1307.92333 · doi:10.1002/mma.3079
[29] Chen, M. X.; Srivastava, H. M., Existence and stability of bifurcating solution of a chemotaxis model, Proc. Amer. Math. Soc., 151, 11, 4735-4749, 2023 · Zbl 1523.35031 · doi:10.1090/proc/16536
[30] Macdonald, C. B.; Brandman, J.; Ruuth, S. J., Solving eigenvalue problems on curved surfaces using the closest point method, J. Comput. Phys., 230, 22, 7944-7956, 2011 · Zbl 1231.65205 · doi:10.1016/j.jcp.2011.06.021
[31] Yang, J.; Kim, J., Numerical approximation of the square phase-field crystal dynamics on the three-dimensional objects, J. Comput. Phys., 471, 111652, 2022 · Zbl 07605611 · doi:10.1016/j.jcp.2022.111652
[32] Lee, C.; Yoon, S.; Park, J.; Kim, H.; Li, Y.; Jeong, D.; Kim, S.; Kwak, S.; Kim, J., Phase-field computations of anisotropic ice crystal growth on a spherical surface, Comput. Math. Appl., 125, 25-33, 2022 · Zbl 1524.65362 · doi:10.1016/j.camwa.2022.08.035
[33] Park, J.; Lee, C.; Choi, Y.; Lee, H. G.; Kwak, S.; Hwang, Y.; Kim, J., An unconditionally stable splitting method for the Allen-Cahn equation with logarithmic free energy, J. Eng. Math., 132, 1, 18, 2022 · Zbl 1489.65134 · doi:10.1007/s10665-021-10203-6
[34] Lee, C.; Park, J.; Kwak, S.; Kim, S.; Choi, Y.; Ham, S.; Kim, J., An adaptive time-stepping algorithm for the Allen-Cahn equation, J. Funct. Spaces, 2022, 2731593, 2022 · Zbl 1497.65129 · doi:10.1155/2022/2731593
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.