×

Boundedness and stabilization of solutions to a chemotaxis May-Nowak model. (English) Zbl 1466.35044

Summary: The chemotaxis May-Nowak model \[ \begin{cases} u_t=D_u \Delta u-\nabla \cdot (uf\left( u\right) \nabla v)-g\left( u\right) w+r-u, & x\in \Omega,\quad t>0,\\ v_t=D_v \Delta v+g\left( u\right) w-v, & x\in \Omega,\quad t>0,\\ w_t=D_w \Delta w+v-w, & x\in \Omega ,\quad t>0, \end{cases} \] is considered in a bounded domain \(\Omega \subset \mathbb{R}^n\) (\(n\ge 1\)) with homogeneous Neumann boundary conditions and the parameters \(D_u,D_v,D_w,r>0\). The chemotactic sensitivity function and the conversion function are given by \(f\left( s\right) =K_f\left( 1+s\right)^{-\alpha}\) and \(g(s) = K_g s^{\beta}\) for all \(s > 0\), respectively, where \(K_f\in \mathbb{R}\), \(K_g, \alpha, \beta >0\). The global boundedness of solution is shown if the following case holds: \[ \alpha > \max \left\{ \frac{n\beta}{4}, \frac{\beta}{2}, \frac{n(n+2)}{6n+8}\beta +\frac{1}{2} \right\}. \] Moreover, for the large time behavior of the global smooth bounded solution, the basic reproduction number \(R_0:=K_gr^{\beta}\) has an important effect [X. Lai and X. Zou, Bull. Math. Biol. 76, No. 11, 2806–2833 (2014; Zbl 1329.92074); W. Wang et al., Nonlinear Anal., Real World Appl. 33, 253–283 (2017; Zbl 1352.92094)], and system has the infection-free steady state if \(0<R_0<1\) and the coexistence equilibrium steady state if \(R_0>1\) [A. Korobeinikov, Bull. Math. Biol. 66, No. 4, 879–883 (2004; Zbl 1334.92409)]. By constructing an appropriate energy function, under the conditions that \(K_f\) and \(K_g\) are appropriately mild, it is shown that:
If \(R_0\in (0,1)\), then any global bounded solution converges to \(\left( r, 0, 0\right)\) as \(t\rightarrow \infty \);
If \(R_0\in (1,\infty ), \beta =1\), then any global bounded solution converges to \(\bigg ( \frac{1}{K_g}, r-\frac{1}{K_g}, r-\frac{1}{K_g} \bigg )\) as \(t\rightarrow \infty \).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35B35 Stability in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117 · doi:10.1512/iumj.2016.65.5776
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[3] Bellomo, N.; Painter, KJ; Tao, Y.; Winkler, M., Occurrence vs. absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79, 1990-2010 (2019) · Zbl 1428.35615 · doi:10.1137/19M1250261
[4] Bellomo, N.; Tao, Y., Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. Ser. S., 13, 105-117 (2020) · Zbl 1439.35052
[5] Bonhoeffer, S.; May, RM; Shaw, GM; Nowak, MA, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci., 94, 6971-6976 (1997) · doi:10.1073/pnas.94.13.6971
[6] Campos, D.; Méndez, V.; Fedotov, S., The effects of distributed life cycles on the dynamics of viral infections, J. Theor. Biol., 254, 430-438 (2008) · Zbl 1400.92467 · doi:10.1016/j.jtbi.2008.05.035
[7] Friedman, A., Partial Differential Equations (1969), New York: Holt, Rinehart and Winston, New York · Zbl 0224.35002
[8] Fuest, M., Boundedness enforced by mildly saturated conversion in a chemotaxis-May-Nowak model for virus infection, J. Math. Anal. Appl., 472, 1729-1740 (2019) · Zbl 1412.35340 · doi:10.1016/j.jmaa.2018.12.020
[9] Hethcote, HW, The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[10] Hirata, M.; Kurima, S.; Mizukami, M.; Yokota, T., Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics, J. Differ. Equ., 263, 470-490 (2017) · Zbl 1362.35049 · doi:10.1016/j.jde.2017.02.045
[11] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[12] Hu, B.; Lankeit, J., Boundedness of solutions to a virus infection model with saturated chemotaxis, J. Math. Anal. Appl., 468, 344-358 (2018) · Zbl 1396.92006 · doi:10.1016/j.jmaa.2018.08.019
[13] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 258, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[14] Jones, E.; Roemer, P.; Raghupathi, M.; Pankavich, S., Analysis and simulation of the three-component model of HIV dynamics, SIAM Undergr. Res. Online, 7, 89-105 (2014) · doi:10.1137/13S012698
[15] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[16] Korobeinikov, A., Global properties of basic virus dynamics models, Bull. Math. Biol., 66, 879-883 (2004) · Zbl 1334.92409 · doi:10.1016/j.bulm.2004.02.001
[17] Lai, X.; Zou, X., Repulsion effect on superinfecting virions by infected cells, Bull. Math. Biol., 76, 2806-2833 (2014) · Zbl 1329.92074 · doi:10.1007/s11538-014-0033-9
[18] Lions, JL; Magenes, E., Non-homogeneous Boundary Value Problems and Applications (2012), Berlin: Springer, Berlin · Zbl 0227.35001
[19] Liu, D.; Tao, Y., Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B., 31, 379-388 (2016) · Zbl 1374.35009 · doi:10.1007/s11766-016-3386-z
[20] Mizoguchi, N.; Souplet, P., Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire., 31, 851-875 (2014) · Zbl 1302.35075 · doi:10.1016/j.anihpc.2013.07.007
[21] Nirenberg, L., An extended interpolation inequality, Ann Scuo. Norm. Sup Pisa., 20, 733-737 (1966) · Zbl 0163.29905
[22] Nowak, MA; Bangham, CR, Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996) · doi:10.1126/science.272.5258.74
[23] Nowak, M.; May, RM, Virus Dynamics: Mathematical Principles of Immunology and Virology (2000), London: Oxford University Press, London · Zbl 1101.92028
[24] Pan, X., Wang, L.: Improvement of conditions for boundedness in a fully parabolic chemotaxis system with nonlinear signal production. C. R. Mathématique. (2020) to appear
[25] Pan, X.; Wang, L., On a quasilinear fully parabolic two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B. (2021) · Zbl 1480.92035 · doi:10.3934/dcdsb.2021047
[26] Perelson, AS; Neumann, AU; Markowitz, M.; Leonard, JM; Ho, DD, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586 (1996) · doi:10.1126/science.271.5255.1582
[27] Stancevic, O.; Angstmann, C.; Murray, JM; Henry, BI, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75, 774-795 (2013) · Zbl 1273.92035 · doi:10.1007/s11538-013-9834-5
[28] Tao, Y.; Wang, Z., Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23, 1-36 (2013) · Zbl 1403.35136 · doi:10.1142/S0218202512500443
[29] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[30] Wang, L.; Mu, C., A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B., 25, 4585-4601 (2020) · Zbl 1465.35064
[31] Wang, L.; Li, Y.; Mu, C., Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34, 789-802 (2014) · Zbl 1277.35215 · doi:10.3934/dcds.2014.34.789
[32] Wang, L.; Mu, C.; Zheng, P., On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equ., 256, 1847-1872 (2014) · Zbl 1301.35060 · doi:10.1016/j.jde.2013.12.007
[33] Wang, W.; Ma, W.; Lai, X., Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis, Nonlinear Anal. RWA, 33, 253-283 (2017) · Zbl 1352.92094 · doi:10.1016/j.nonrwa.2016.04.013
[34] Wei, X.; Ghosn, SK; Taylor, ME; Johnson, VAA; Emini, EA; Deutsch, P.; Lifson, JD; Bonhoeffer, S.; Nowak, MA; Hahn, BH; Saag, MS; Shaw, GM, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122 (1995) · doi:10.1038/373117a0
[35] Winkler, M., A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31, 2031-2056 (2018) · Zbl 1391.35240 · doi:10.1088/1361-6544/aaaa0e
[36] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[37] Winkler, M., Boundedness in a chemotaxis-May-Nowak model for virus dynamics with mildly saturated chemotactic sensitivity, Acta Appl. Math., 163, 1-17 (2019) · Zbl 1423.35172 · doi:10.1007/s10440-018-0211-0
[38] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 1516-1537 (2010) · Zbl 1290.35139 · doi:10.1080/03605300903473426
[39] Winkler, M., Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220 · doi:10.1002/mma.1146
[40] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[41] Xiang, T., How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459, 1172-1200 (2018) · Zbl 1380.35032 · doi:10.1016/j.jmaa.2017.11.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.