×

Entanglement of four-qubit systems: A geometric atlas with polynomial compass II (the tame world). (English) Zbl 1357.81028

Summary: [For part I see the authors, ibid. 55, No. 1, 012202, 31 p. (2014; Zbl 1294.81025)] We propose a new approach to the geometry of the four-qubit entanglement classes depending on parameters. More precisely, we use invariant theory and algebraic geometry to describe various stratifications of the Hilbert space by Stochastic Local Operations with Classical Communication (SLOCC) invariant algebraic varieties. The normal forms of the four-qubit classification of F. Verstraete et al. [Phys. Rev. A 55, No. 5, 052112, 5 p. (2002; doi:10.1103/PhysRevA.65.052112)] are interpreted as dense subsets of components of the dual variety of the set of separable states and an algorithm based on the invariants/covariants of the four-qubit quantum states is proposed to identify a state with a SLOCC equivalent normal form (up to qubits permutation).{
©2017 American Institute of Physics}

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
14J81 Relationships between surfaces, higher-dimensional varieties, and physics

Citations:

Zbl 1294.81025

References:

[1] Arnol’d, V. I., Normal forms for functions near degenerate critical points, the Weyl groups of \(A_k, D_k, E_k\) and Lagrangian singularities, Funct. Anal. Appl., 6, 254-273 (1972) · Zbl 0278.57011 · doi:10.1007/BF01077644
[2] Borsten, L.; Dahanayake, D.; Duff, M. J.; Marrani, A.; Rubens, W., Four-qubit entanglement classification from string theory, Phys. Rev. Lett., 105, 100507 (2010) · doi:10.1103/PhysRevLett.105.100507
[3] Borsten, L.; Duff, M. J.; Lévay, P., The black-hole/qubit correspondence: An up-to-date review, Class. Quant. Gravity, 29, 22, 224008 (2012) · Zbl 1266.83002 · doi:10.1088/0264-9381/29/22/224008
[4] Briand E, E.; Luque, J.-G.; Thibon, J.-Y., A complete set of covariants of the four-qubit system, J. Phys. A, 36, 9915 (2003) · Zbl 1047.81011 · doi:10.1088/0305-4470/36/38/309
[5] Cao, Y.; Wang, A. M., Discussion of the entanglement classification of a 4-qubit pure state, Eur. Phys. J. D, 44, 159-166 (2007) · doi:10.1140/epjd/e2007-00148-y
[6] Chen, L.; Ðoković, D. Ž.; Grassl, M.; Zeng, B., Four-qubit pure states as fermionic states, Phys. Rev. A, 88, 5, 052309 (2013) · doi:10.1103/PhysRevA.88.052309
[7] Chterental, O.; Ðoković, D. Ž.; Long, G. D., Normal forms and tensor ranks of pure states of four-qubit, Linear Algebra Research Advances, 133-167 (2007)
[8] Coxeter, H. S. M., Complex Regular Polytopes (1991) · Zbl 0732.51002
[9] Coxeter, H. S. M.; Coxeter, H. S., Regular and semiregular polytopes.III, Kaleidoscopes (1995) · JFM 66.0738.02
[10] Coxeter, H. S. M., Regular polytopes (1973) · Zbl 0031.06502
[11] Coxeter, H. S. M.; Coxeter, H. S., Two aspects of the regular 24-cell in four dimensions, Kaleidoscopes (1995) · Zbl 0841.51014
[12] Dimca, A., Milnor numbers and multiplicities of dual varieties, Rev. Roumaine Math. Pures, 52, 535-538 (1986) · Zbl 0606.14002
[13] Ðoković, D. Ž.; Lemire, N.; Sekiguchi, J., The closure ordering of adjoint nilpotent orbits in so(p, q), Tohoku Math. J., 53, 3, 395-442 (2001) · Zbl 0995.17007 · doi:10.2748/tmj/1178207418
[14] Ðoković, D. Ž.; Osterloh, A., On polynomial invariants of several qubits., J. Math. Phys., 50, 033509 (2009) · Zbl 1202.81017 · doi:10.1063/1.3075830
[15] Eltschka, C.; Siewert, J., Quantifying entanglement resources, J. Phys. A, 47, 42, 424005 (2014) · Zbl 1308.81026 · doi:10.1088/1751-8113/47/42/424005
[16] Fulton, W.; Harris, J., Representation Theory (1991) · Zbl 0744.22001
[17] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Hyperdeterminants, Adv. Math., 96, 2, 226-263 (1992) · Zbl 0774.15002 · doi:10.1016/0001-8708(92)90056-Q
[18] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, Resultants and Multidimensional Determinants (1994) · Zbl 0827.14036
[19] Gour, G.; Wallach, N., On symmetric SL-invariant polynomials in four-qubit, Symmetry: Representation Theory and Its Applications, 259-267 (2014) · Zbl 1314.81036
[20] Grassl, M.; Beth, T.; Pellizzari, T., Codes for the quantum erasure channel, Phys. Rev. A, 56, 1, 33 (1997) · doi:10.1103/PhysRevA.56.33
[21] Gühne, O.; Jungnitsch, B.; Moroder, T.; Weinstein, Y. S., Multiparticle entanglement in graph-diagonal states: Necessary and sufficient conditions for four qubits, Phys. Rev. A, 84, 5, 052319 (2011) · doi:10.1103/PhysRevA.84.052319
[22] Harris, J., Algebraic Geometry: A First Course, 133 (1992) · Zbl 0779.14001
[23] Heydari, H., Geometrical structure of entangled states and the secant variety, Quantum Inf. Process., 7, 1, 3-32 (2008) · Zbl 1140.81327 · doi:10.1007/s11128-007-0071-4
[24] Holweck, F.; Lévay, P., Classification of multipartite systems featuring only \(<mml:math display=''inline`` overflow=''scroll``> <mml:mfenced close=''〉`` open=''|`` separators=''>\) and \(\left``|G H Z\right``\textrangle\) genuine entangled states, J. Phys. A, 49, 8, 085201 (2016) · Zbl 1342.81039 · doi:10.1088/1751-8113/49/8/085201
[25] Holweck, F.; Luque, J.-G.; Planat, M., Singularity of type D4 arising from four-qubit systems, J. Phys. A, 47, 13, 135301 (2014) · Zbl 1287.81035 · doi:10.1088/1751-8113/47/13/135301
[26] Holweck, F.; Luque, J.-G.; Thibon, J.-Y., Geometric descriptions of entangled states by auxiliary varieties, J. Math. Phys., 53, 102203 (2012) · Zbl 1280.81019 · doi:10.1063/1.4753989
[27] Holweck, F.; Luque, J.-G.; Thibon, J.-Y., Entanglement of four-qubit systems: A geometric atlas with polynomial compass I (the finite world), J. Math. Phys., 55, 012202 (2014) · Zbl 1294.81025 · doi:10.1063/1.4858336
[28] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 2, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[29] Ivey, T.; Landsberg, J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, 61 (2003) · Zbl 1105.53001
[30] Johansson, M.; Ericsson, M.; Söqvist, E.; Osterloh, A., Classification scheme of pure multipartite states based on topological phases, Phys. Rev. A, 89, 012320 (2014) · doi:10.1103/PhysRevA.89.012320
[31] Lamata, L.; León, J.; Salgado, D.; Solano, E., Inductive entanglement classification of four-qubit under stochastic local operations and classical communication, Phys. Rev. A, 72, 022318 (2007) · doi:10.1103/PhysRevA.75.022318
[32] Landsberg, J. M., Tensors: Geometry and Applications, 128 (2011) · Zbl 1238.15013
[33] Lévay, P., On the geometry of four-qubit invariant, J. Phys. A, 39, 30, 9533 (2006) · Zbl 1095.81012 · doi:10.1088/0305-4470/39/30/009
[34] Lévay, P., STU black holes as four-qubit systems, Phys. Rev. D, 82, 026003 (2010) · doi:10.1103/PhysRevD.82.026003
[35] Lévay, P.; Holweck, F., Embedding qubits into fermionic Fock space: Peculiarities of the four-qubit case, Phys. Rev. D, 91, 12, 125029 (2015) · doi:10.1103/PhysRevD.91.125029
[36] Li, D.; Li, X.; Huang, H.; Li, X., SLOCC classification for nine families of four-qubits, Quant. Inf. Comput., 9, 9, 778-800 (2009) · Zbl 1178.81030
[37] Lin, S.; Sturmfels, B., Polynomial relations among principal minors of a 4 × 4-matrix, J. Algebra, 322, 11, 4121-4131 (2009) · Zbl 1198.14049 · doi:10.1016/j.jalgebra.2009.06.026
[38] Luque, J.-G.; Thibon, J.-Y., The polynomial invariants of four-qubit, Phys. Rev. A, 67, 042303 (2003) · doi:10.1103/PhysRevA.67.042303
[39] Luque, J.-G.; Thibon, J.-Y., Algebraic invariants of five qubits, J. Phys. A, 39, 2, 371 (2005) · Zbl 1084.81020 · doi:10.1088/0305-4470/39/2/007
[40] Miyake, A., Classification of multipartite entangled states by multidimensional determinants, Phys. Rev. A, 67, 012108 (2003) · doi:10.1103/PhysRevA.67.012108
[41] Muir, T., A Treatise on the Theory of Determinants (1882) · JFM 14.0101.02
[42] Olver, P., Classical Invariant Theory (1999) · Zbl 0971.13004
[43] Osterloh, A.; Siewert, J., Constructing N-qubit entanglement monotones from antilinear operators, Phys. Rev. A, 72, 012337 (2005) · doi:10.1103/PhysRevA.72.012337
[44] Osterloh, A.; Siewert, J., The invariant-comb approach and its relation to the balancedness of multipartite entangled states, New J. Phys., 12 (2010) · Zbl 1445.81010 · doi:10.1088/1367-2630/12/7/075025
[45] Osterloh, A.; Siewert, J., Invariant-based entanglement monotones as expectation values and their experimental detection, Phys. Rev. A, 86, 042302 (2012) · doi:10.1103/PhysRevA.86.042302
[46] Parusiński, A., Multiplicity of the dual variety, Bull. London Math. Soc., 23, 5, 429-436 (1991) · Zbl 0714.14027 · doi:10.1112/blms/23.5.429
[47] Popov, V.; Vinberg, E., Invariant theory, Algebraic Geometry IV, 123-278 (1994)
[48] Tevelev, E. A., Projectively dual varieties, J. Math. Sci., 117, 6, 4585-4732 (2003) · Zbl 1027.00508 · doi:10.1023/A:1025366207448
[49] Verstraete, F.; Dehaene, F.; De Moor, B.; Verschelde, H., Four qubits can be entangled in nine different ways, Phys. Rev. A, 65, 052112 (2002) · doi:10.1103/PhysRevA.65.052112
[50] Viehmann, O.; Eltschka, C.; Siewert J, J., Polynomial invariants for discrimination and classification of four-qubit entanglement, Phys. Rev. A, 83, 5, 052330 (2011) · doi:10.1103/PhysRevA.83.052330
[51] Weyman, J.; Zelevinsky, A., Singularities of hyperdeterminants, Ann. Inst. Fourier, 46, 591-644 (1996) · Zbl 0853.14001 · doi:10.5802/aif.1526
[52] Zak, F., Tangents and Secants of Algebraic Varieties, 127 (1993) · Zbl 0795.14018
[53] Zak, F., Determinants of projective varieties and their degrees, Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia of Mathematical Sciences, 132 (2004) · Zbl 1063.14058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.