×

High rank torus actions on contact manifolds. (English) Zbl 1468.14085

A famous LeBrun-Salamon conjecture says that every compact positive quaternion-Kähler manifold is symmetric or, equivalently, every contact Fano manifold with Kähler-Einstein metric is a homogeneous space. Quaternion-Kähler symmetric spaces are known as Wolf spaces and, equivalently, homogeneous complex contact manifolds are known to be the closed orbits in the projectivizations of adjoint representations of simple algebraic groups; they are called adjoint varieties. This conjecture was proved for positive quaternion-Kähler manifolds of (real) dimension \(\leq 16\) and for contact Fano manifolds with a Kähler-Einstein metric of dimension \(\leq 9\); moreover, the conjecture is known for contact Fano manifolds \(X\) (even without assuming that they admit a Kähler-Einstein metric) if the first Chern class of the quotient \(L = TX / F\) of the contact distribution \(F \hookrightarrow TX\) does not generate the second cohomology \(H^2(X,\mathbb Z)\), and in some cases with additional assumptions on group actions.
In the paper under review, the authors prove that a contact Fano manifold is the adjoint variety of one of the simple groups if the group of its automorphisms is reductive of rank \(\geq 2\) and the action of its Cartan torus has only isolated extremal fixed points. Moreover, in the main theorem, they improve previous results so that it covers the adjoint varieties of all the classical series of linear groups and almost all the exceptional ones. More precisely, they prove LeBrun-Salamon conjecture in the following setting. If \(X\) is a contact Fano manifold of dimension \(2n + 1\) whose group of automorphisms is reductive of rank \(\geq \max (2, (n-3)/2)\), then \(X\) is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.
We remark that, although motivated by a problem from Riemannian geometry, the present paper depends only on methods from algebraic geometry.

MSC:

14L30 Group actions on varieties or schemes (quotients)
14M17 Homogeneous spaces and generalizations
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] Beauville, A., Fano contact manifolds and nilpotent orbits, Comment. Math. Helv., 73, 4, 566-583 (1998) · Zbl 0946.53046 · doi:10.1007/s000140050069
[2] Berger, M., Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, 83, 279-330 (1955) · Zbl 0068.36002 · doi:10.24033/bsmf.1464
[3] Białynicki-Birula, A., Some theorems on actions of algebraic groups, Ann. Math., 2, 98, 480-497 (1973) · Zbl 0275.14007 · doi:10.2307/1970915
[4] Bielawski, R., Complete hyper-Kähler \(4n\)-manifolds with a local tri-Hamiltonian \({{\mathbf{R}}}^n\)-action, Math. Ann., 314, 3, 505-528 (1999) · Zbl 0952.53024 · doi:10.1007/s002080050305
[5] Borel, A.; De Siebenthal, J., Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23, 200-221 (1949) · Zbl 0034.30701 · doi:10.1007/BF02565599
[6] Buczyński, J., Wiśniewski, J.A., Weber, A.: Algebraic torus actions on contact manifolds. To appear in J. Differ. Geom. Preprint arXiv:1802.05002 (2018)
[7] Carrell, J.B.: Torus actions and cohomology. In: Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, volume 131 of Encyclopaedia Math. Sci., pp. 83-158. Springer, Berlin (2002) · Zbl 1055.14002
[8] Fang, F., Positive quaternionic Kähler manifolds and symmetry rank, J. Reine Angew. Math., 576, 149-165 (2004) · Zbl 1060.53053
[9] Fang, F., Positive quaternionic Kähler manifolds and symmetry rank. II, Math. Res. Lett., 15, 4, 641-651 (2008) · Zbl 1167.53042 · doi:10.4310/MRL.2008.v15.n4.a4
[10] Fulton, W., Harris, J.: Representation theory, volume 129 of Graduate Texts in Mathematics. Springer, New York (1991) · Zbl 0744.22001
[11] Höring, A.; Śmiech, R., Anticanonical system of Fano fivefolds, Mathematische Nachrichten, 293, 1, 115-119 (2020) · Zbl 1486.14058 · doi:10.1002/mana.201900311
[12] Humphreys, JE, Linear Algebraic Groups (1975), New York-Heidelberg: Springer, New York-Heidelberg · Zbl 0325.20039 · doi:10.1007/978-1-4684-9443-3
[13] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, volume 9 of Graduate Texts in Mathematics. Springer, New York (1978) · Zbl 0447.17001
[14] Kaji, H.; Yasukura, O., Projective geometry of Freudenthal’s varieties of certain type, Mich. Math. J., 52, 3, 515-542 (2004) · Zbl 1071.14051 · doi:10.1307/mmj/1100623411
[15] Kebekus, S., Lines on contact manifolds, J. Reine Angew. Math., 539, 167-177 (2001) · Zbl 0983.53031
[16] Kebekus, S.; Peternell, T.; Sommese, AJ; Wiśniewski, JA, Projective contact manifolds, Invent. Math., 142, 1, 1-15 (2000) · Zbl 0994.53024 · doi:10.1007/PL00005791
[17] Landsberg, JM; Manivel, L., The projective geometry of Freudenthal’s magic square, J. Algebra, 239, 2, 477-512 (2001) · Zbl 1064.14053 · doi:10.1006/jabr.2000.8697
[18] LeBrun, C., Fano manifolds, contact structures, and quaternionic geometry, Int. J. Math., 6, 3, 419-437 (1995) · Zbl 0835.53055 · doi:10.1142/S0129167X95000146
[19] LeBrun, C.; Salamon, S., Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., 118, 1, 109-132 (1994) · Zbl 0815.53078 · doi:10.1007/BF01231528
[20] Matsushima, Y., Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlérienne, Nagoya Math. J., 11, 145-150 (1957) · Zbl 0091.34803 · doi:10.1017/S0027763000002026
[21] Occhetta, G., Romano, E.A., Conde, L.E.S., Wiśniewski, J.A.: Small bandwidth \({{\mathbb{C}}}^*\)-actions and birational geometry. Preprint arXiv:1911.12129 (2019)
[22] Romano, EA; Wiśniewski, JA, Adjunction for varieties with a \({{\mathbb{C}}}^*\) action, Transf. Groups (2020) · Zbl 1504.14082 · doi:10.1007/s00031-020-09627-8
[23] Salamon, S., Quaternionic Kähler manifolds, Invent. Math., 67, 143-171 (1982) · Zbl 0486.53048 · doi:10.1007/BF01393378
[24] Tevelev, EA, Projectively dual varieties, J. Math. Sci. (N. Y.), 117, 6, 4585-4732 (2003) · Zbl 1027.00508 · doi:10.1023/A:1025366207448
[25] Wahl, JM, A cohomological characterization of \({ P}^n\), Invent. Math., 72, 2, 315-322 (1983) · Zbl 0544.14013 · doi:10.1007/BF01389326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.