×

Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic. (English) Zbl 1054.62071

Summary: A new affine invariant multivariate analogue of the two-sample Mann-Whitney-Wilcoxon test based on the Oja criterion function is introduced. The associated affine equivariant estimate of shift, the multivariate Hodges-Lehmann estimate, is also considered. Asymptotic theory is developed to provide approximations for the null distribution as well as for a sequence of contiguous alternatives to consider limiting efficiencies of the test and estimate. The theory is illustrated by an example.
T. P. Hettmansperger et al. [Stat. Sin. 8, 785–800 (1998; Zbl 0905.62062)] considered alternative slightly different affine invariant extensions also based on the Oja criterion. The methods proposed in this paper are computationally more intensive, but surprisingly more efficient in the multivariate normal case. For elliptical distributions, the limiting efficiencies coincide with those of the affine invariant spatial rank methods.

MSC:

62H15 Hypothesis testing in multivariate analysis
62G20 Asymptotic properties of nonparametric inference
62G10 Nonparametric hypothesis testing

Citations:

Zbl 0905.62062
Full Text: DOI

References:

[1] Arcones M. A., Ann. Stat. 22 pp 1460– (1994) · Zbl 0827.62023 · doi:10.1214/aos/1176325637
[2] Brown B. M., J. Roy. Statist. Soc. Ser. B 49 pp 301– (1987)
[3] Chakraborty B., Multivariate Analysis, Design of Experiments and Survey Sampling (1999)
[4] Chakraborty B., Stat. Sinica 8 pp 767– (1998)
[5] Chaudhuri P., Ann. Statist. 20 pp 897– (1992) · Zbl 0762.62013 · doi:10.1214/aos/1176348662
[6] Efron B., An Introduction to the Bootstrap (1993) · Zbl 0835.62038
[7] Hajek J., Theory of Rank Tests (1967) · Zbl 0162.50503
[8] Hettmansperger T. P., Statistical Inference Based on Ranks (1984) · Zbl 0592.62031
[9] Hettmansperger T. P., Statist. Sinica 8 pp 785– (1998)
[10] Hettmansperger T. P., J. Nonparametr. Statist. 11 pp 271– (1999) · Zbl 0992.62058 · doi:10.1080/10485259908832784
[11] Hettmansperger T. P., J. Roy. Statist. Soc. Ser. B 56 pp 221– (1994)
[12] Hoeffding W., J. Amer. Statist. Assoc. 58 pp 13– (1963) · Zbl 0127.10602 · doi:10.2307/2282952
[13] Koroluk V. S., Theory of U-Statistics (1989)
[14] Liu R. Y., J. Amer. Statist. Assoc. 88 pp 252– (1993) · Zbl 0772.62031 · doi:10.2307/2290720
[15] Marden J. I., Multivariate Analysis, Design of Experiments and Survey Sampling (1999)
[16] Möttönen J., J. Multivariate Anal. 66 pp 118– (1998) · Zbl 1127.62361 · doi:10.1006/jmva.1998.1740
[17] Möttönen J., J. Nonparamtr. Statist. 5 pp 201– (1995) · Zbl 0857.62056 · doi:10.1080/10485259508832643
[18] Möttönen J., Ann. Statist. 25 pp 542– (1997) · Zbl 0873.62048 · doi:10.1214/aos/1031833663
[19] Oja H., Stat. Probab. Lett. 1 pp 327– (1983) · Zbl 0517.62051 · doi:10.1016/0167-7152(83)90054-8
[20] Oja H., Scand. J. Statist. 26 pp 319– (1999) · Zbl 0938.62063 · doi:10.1111/1467-9469.00152
[21] Orban J., J. Amer. Statist. Assoc. 77 pp 666– (1982) · Zbl 0499.62038 · doi:10.2307/2287734
[22] Puri M. L., Nonparametric Methods in Multivariate Analysis (1971) · Zbl 0237.62033
[23] Randles R. H., L1-Statistical Analysis and Related Methods pp pp. 295–302– (1992)
[24] Randles R. H., Comm. Statist. Theory Methods 15 pp 4225– (1990)
[25] Rockafellar R. T., Convex Analysis (1970) · Zbl 0193.18401
[26] Serfling R. J., Approximation Theorems of Mathematical Statistics (1980) · Zbl 0538.62002 · doi:10.1002/9780470316481
[27] Visuri S., Journal of Statistical Planning and Inference pp 557–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.