×

Ranks and pseudo-ranks – surprising results of certain rank tests in unbalanced designs. (English) Zbl 07777546

Summary: Rank-based inference methods are applied in various disciplines, typically when procedures relying on standard normal theory are not justifiable. Various specific rank-based methods have been developed for two and more samples and also for general factorial designs (e.g. Kruskal-Wallis test or Akritas-Arnold-Brunner test). It is the aim of the present paper (1) to demonstrate that traditional rank procedures for several samples or general factorial designs may lead to surprising results in case of unequal sample sizes as compared with equal sample sizes, (2) to explain why this is the case and (3) to provide a way to overcome these disadvantages. Theoretical investigations show that the surprising results can be explained by considering the non-centralities of the test statistics, which may be non-zero for the usual rank-based procedures in case of unequal sample sizes, while they may be equal to 0 in case of equal sample sizes. A simple solution is to consider unweighted relative effects instead of weighted relative effects. The former effects are estimated by means of the so-called pseudo-ranks, while the usual ranks naturally lead to the latter effects. A real data example illustrates the practical meaning of the theoretical discussions.
{© 2020 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.}

MSC:

62Gxx Nonparametric inference
62Kxx Design of statistical experiments
62Pxx Applications of statistics

Software:

rankFD

References:

[1] Acion, L., Peterson, J., Temple, S. & Arndt, S.2006. Probabilistic index: An intuitive nonparametric approach to measuring the size of treatment effects. Stat. Med., 25, 591-602.
[2] Akritas, M.G. & Arnold, S.F.1994. Fully nonparametric hypotheses for factorial designs I: Multivariate repeated measures designs. J. Am. Stat. Assoc., 89, 336-343. · Zbl 0793.62025
[3] Akritas, M.G., Arnold, S.F. & Brunner, E.1997. Nonparametric hypotheses and rank statistics for unbalanced factorial designs. J. Am. Stat. Assoc., 92, 258-265. · Zbl 0890.62038
[4] Birnbaum, Z.W. & Klose, O.M.1957. Bounds for the variance of the Mann-Whitney statistic. Ann. Math. Stat., 28, 933-945. · Zbl 0081.14002
[5] Brunner, E., Bathke, A.C. & Konietschke, F.2019. Rank‐ and Pseudo‐rank Procedures in Factorial Designs—Using R and SAS—Independent Observations Springer Series in Statistics. Springer: Heidelberg. · Zbl 1455.62001
[6] Brunner, E., Konietschke, F., Pauly, M. & Puri, M.L.2017. Rank‐based procedures in factorial designs: hypotheses about nonparametric treatment effects. J. R. Stat. Soc. Ser. B, 79, 1463-1485. · Zbl 1458.62169
[7] Brunner, E. & Puri, M.L.2001. Nonparametric methods in factorial designs. Stat. Pap., 42, 1-52. · Zbl 0964.62076
[8] Brunner, E. & Puri, M.L.2002. A class of rank‐score tests in factorial designs. J. Stat. Plann. Inference, 103, 331-360. · Zbl 0988.62048
[9] Chung, E.Y. & Romano, J.P.2016. Asymptotically valid and exact permutation tests based on two‐sample U‐statistics. J. Stat. Plann. Inference, 168, 97-105. · Zbl 1333.62124
[10] Dobler, D., Friedrich, S. & Pauly, M.2020. Nonparametric MANOVA in meaningful effects. Ann Inst Stat Math, 72997-1022. https://doi.org/10.1007/s10463‐019‐00717‐3 · Zbl 1445.62086 · doi:10.1007/s10463‐019‐00717‐3
[11] Friedman, M.1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc., 32, 675-701. · JFM 63.1098.02
[12] Gao, X. & Alvo, M.2005a. A nonparametric test for interaction in two‐way layouts. Can. J. Stat., 33, 529-543. · Zbl 1098.62051
[13] Gao, X. & Alvo, M.2005b. A unified nonparametric approach for unbalanced factorial designs. J. Am. Stat. Assoc., 100, 926-941. · Zbl 1117.62338
[14] Happ, M., Zimmermann, G., Brunner, E. & Bathke, A.2019. Pseudo‐ranks: How to calculate them efficiently in R. J. Stat. Softw., 95(1), 1-22. https://doi.org/10.18637/jss.v095.c01. · doi:10.18637/jss.v095.c01
[15] Hettmansperger, T.P. & Norton, R.M.1987. Tests for patterned alternatives in k‐sample problems. J. Am. Stat. Assoc., 82, 292-299. · Zbl 0617.62045
[16] Janssen, A.1999. Testing nonparametric statistical functionals with applications to rank tests. J. Stat. Plann. Inference, 81, 71-93. · Zbl 0951.62037
[17] Kepner, J.L. & Robinson, D.H.1988. Nonparametric methods for detecting treatment effects in repeated‐measures designs. J. Am. Stat. Assoc., 83, 456-461. · Zbl 0664.62042
[18] Konietschke, F., Friedrich, S., Brunner, E. & Pauly, M.2019. RankFD: rank‐based tests for general factorial designs. R package version 0.0.3.
[19] Konietschke, F., Hothorn, L.A. & Brunner, E.2012. Rank‐based multiple test procedures and simultaneous confidence intervals. Electron. J. Stat., 6, 737-758. https://doi.org/10.1214/12‐EJS691 · Zbl 1334.62083 · doi:10.1214/12‐EJS691
[20] Kotz, S., Lumelskii, Y. & Pensky, M.2003. The Stress-Strength Model and Its Generalizations. World Scientific Publishing: New Jersey. · Zbl 1017.62100
[21] Kruskal, W.H. & Wallis, W.A.1952. The use of ranks in one‐criterion variance analysis. J. Am. Stat. Assoc., 47, 583-621. · Zbl 0048.11703
[22] Kulle, B.1999. Nichtparametrisches Behrens‐Fisher‐Problem im Mehrstichprobenfall. Diploma Thesis, University of Göttingen.
[23] Orban, J. & Wolfe, D.A.1980. Distribution‐free partially sequential placement procedures. Communications in Statistics, Ser. A, 9, 883-904. · Zbl 0434.62061
[24] Orban, J. & Wolfe, D.A.1982. A class of distribution‐free two‐sample tests based on placements. J. Am. Stat. Assoc., 77, 666-672. · Zbl 0499.62038
[25] Peterson, I.2002. Tricky dice revisited. Sci. News, 161. https://www.sciencenews.org/article/tricky‐dice‐revisited
[26] Ramosaj, B., Amro, L. & Pauly, M.2018. A cautionary tale on using imputation methods for inference in matched pairs design. arXiv:1806.06551 [stat.AP].
[27] Rommer, P.S., Eichstädt, K., Ellenberger, D., Flachenecker, P., Friede, T., Haas, J., Kleinschnitz, C., Pöhlau, D., Rienhoff, O., Stahmann, A. & Zettl, U.K.2018. Symptomatology and symptomatic treatment in multiple sclerosis: Results from a nationwide MS registry. Mult. Scler. J., 25, 1641-1652. https://doi.org/10.1177/1352458518799580 · doi:10.1177/1352458518799580
[28] Thangavelu, K. & Brunner, E.2007. Wilcoxon-Mann-Whitney test for stratified samples and Efron’s paradox dice. J. Stat. Plann. Inference, 137, 720-737. · Zbl 1104.62121
[29] Thas, O., De Neve, J., Clement, L. & Ottoy, J.‐P.2012. Probabilistic index models. J. R. Stat. Soc., 74, 623-671. · Zbl 1411.62120
[30] Umlauft, M., Konietschke, F. & Pauly, M.2017. Rank‐based permutation approaches for nonparametric factorial designs. Br. J. Math. Stat. Psychol., 70, 368-390. · Zbl 1458.62180
[31] Umlauft, M., Placzek, M., Konietschke, F. & Pauly, M.2019. Wild bootstrapping rank‐based procedures: Multiple testing in nonparametric factorial repeated measures designs. J. Multivar. Anal., 171, 176-192. · Zbl 1418.62202
[32] Whitley, E. & Ball, J.2002. Statistics review 6: Nonparametric methods. Crit. Care, 6(6), 509-513.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.