×

Nilpotent fusion systems. (English) Zbl 1441.20014

Summary: Let \(p\) be a prime and let \(\mathcal{F}\) be a saturated fusion system over a finite \(p\)-group \(P\). A fusion system \(\mathcal{F}\) is said to be nilpotent if \(\mathcal{F} = \mathcal{F}_P(P)\). We give various criteria for a saturated fusion system \(\mathcal{F}\) to be nilpotent, which generalize the analogous criteria for a finite group to be \(p\)-nilpotent.

MSC:

20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D15 Finite nilpotent groups, \(p\)-groups
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
Full Text: DOI

References:

[1] Asaad, M., On \(p\)-nilpotence of finite groups, J. Algebra, 277, 157-164 (2004) · Zbl 1061.20015
[2] Asaad, M., On \(p\)-nilpotence and supersolvability of finite groups, Comm. Algebra, 34, 189-195 (2006) · Zbl 1092.20020
[3] Aschbacher, M., Normal subsystems of fusion systems, Proc. Lond. Math. Soc., 97, 3, 239-271 (2008) · Zbl 1241.20026
[4] Aschbacher, M., The Generalized Fitting Subsystem of a Fusion System, Mem. Amer. Math. Soc., vol. 209(986) (2011) · Zbl 1278.20020
[5] Aschbacher, M.; Kessar, R.; Oliver, B., Fusion Systems in Algebra and Topology, London Math. Soc. Lecture Note Ser., vol. 391 (2011), Cambridge University Press · Zbl 1255.20001
[6] Broto, C.; Castellana, N.; Grodal, J.; Levi, R.; Oliver, B., Subgroup families controlling \(p\)-local finite groups, Proc. Lond. Math. Soc., 91, 325-354 (2005) · Zbl 1090.20026
[7] Broto, C.; Castellana, N.; Grodal, J.; Levi, R.; Oliver, B., Extensions of \(p\)-local finite groups, Trans. Amer. Math. Soc., 359, 8, 3791-3858 (2007) · Zbl 1145.55013
[8] Ballester-Bolinches, A.; Guo, X., Some results on \(p\)-nilpotence and solubility of finite groups, J. Algebra, 228, 491-496 (2000) · Zbl 0961.20016
[9] Benson, D. J.; Grodal, J.; Henke, E., Group cohomology and control of \(p\)-fusion, Invent. Math., 197, 3, 491-507 (2014) · Zbl 1311.20051
[10] Broto, C.; Levi, R.; Oliver, B., The homotopy theory of fusion systems, J. Amer. Math. Soc., 16, 4, 779-856 (2003) · Zbl 1033.55010
[11] Broué, M.; Puig, L., A Frobenius theorem for blocks, Invent. Math., 56, 2, 117-128 (1980) · Zbl 0425.20008
[12] Cantarero, J.; Scherer, J.; Viruel, A., Nilpotent \(p\)-local finite group, Ark. Mat., 52, 2, 203-225 (2014) · Zbl 1320.20024
[13] Diaz, A.; Glesser, A.; Mazza, N.; Park, S., Glauberman’s and Thompson’s theorems for fusion systems, Proc. Amer. Math. Soc., 137, 2, 495-503 (2009) · Zbl 1163.20009
[14] Diaz, A.; Glesser, A.; Park, S.; Stancu, R., Tate’s and Yoshida’s theorems on control of transfer for fusion systems, J. Lond. Math. Soc. (2), 84, 2, 475-494 (2011) · Zbl 1235.20022
[15] Dornhoff, L., \(M\)-groups and 2-groups, Math. Z., 100, 226-256 (1967) · Zbl 0157.35503
[16] Goldschmidt, D., Strongly closed 2-subgroups of finite groups, Ann. Math., 102, 3, 475-489 (1975) · Zbl 0333.20013
[17] González-Sánchez, J., A \(p\)-nilpotency criterion, Arch. Math., 94, 201-205 (2010) · Zbl 1208.20021
[18] Glesser, A., Sparse fusion systems, Proc. Edinb. Math. Soc., 56, 135-150 (2013) · Zbl 1269.20013
[19] Gorenstein, D., Finite Groups (1968), Harper and Row: Harper and Row New York · Zbl 0185.05701
[20] Guo, X.; Wei, X., The influence of \(H\)-subgroups on the structure of finite groups, J. Group Theory, 13, 267-276 (2010) · Zbl 1202.20024
[21] Gilotti, A.; Serena, L., Strongly closed subgroups and strong fusion, J. Lond. Math. Soc., 32, 103-106 (1985) · Zbl 0545.20010
[22] Guo, X.; Shum, K. P., \(p\)-nilpotence of finite groups and minimal subgroups, J. Algebra, 270, 459-470 (2003) · Zbl 1072.20020
[23] Hai, J., On \(p\)-hypercenter of finite groups, Adv. Math. (China), 29, 4, 383-384 (2000)
[24] Huppert, B., Endliche Gruppen I (1967), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0217.07201
[25] Huppert, B.; Blackburn, N., Finite Groups. II, Grundlehren Math. Wiss., vol. 242 (1982), Springer-Verlag: Springer-Verlag Berlin, AMD, 44 · Zbl 0477.20001
[26] Kessar, R.; Linckelmann, M., ZJ-theorems for fusion systems, Trans. Amer. Math. Soc., 360, 6, 3093-3106 (2008) · Zbl 1144.20004
[27] Külshammer, B.; Puig, L., Extensions of nilpotent blocks, Invent. Math., 102, 1, 17-71 (1990) · Zbl 0739.20003
[28] Comm. Algebra, 26, 2453-2461 (1998) · Zbl 0911.20016
[29] Liao, J.; Liu, Y.; Zhang, J., Minimal non-nilpotent and locally nilpotent fusion systems, Algebra Colloq. (2015), in press
[30] Li, R.; Zhang, Q., A note on \(p\)-supersolvable groups, Acta Math. Hungar., 116, 1-2, 27-34 (2007) · Zbl 1135.20010
[31] Onofrei, S.; Stancu, R., A characteristic subgroup for fusion systems, J. Algebra, 322, 1705-1718 (2009) · Zbl 1225.20020
[32] Puig, L., Nilpotent blocks and their source algebras, Invent. Math., 93, 1, 77-116 (1988) · Zbl 0646.20010
[33] Puig, L., The hyperfocal subalgebra of a block, Invent. Math., 141, 365-397 (2000) · Zbl 0957.20007
[34] Puig, L., Frobenius categories, J. Algebra, 303, 309-357 (2006) · Zbl 1110.20011
[35] Shi, J.; Shi, W.; Zhang, C., A note on \(p\)-nilpotence and solvability of finite groups, J. Algebra, 321, 1555-1560 (2009) · Zbl 1169.20012
[36] Tong-Viet, H. P., Influence of strongly closed 2-subgroups on the structure of finite groups, Glasg. Math. J., 53, 3, 577-581 (2011) · Zbl 1239.20022
[37] Wei, H.; Wang, Y.; Liu, X., Some necessary and sufficient conditions for \(p\)-nilpotence of finite groups, Bull. Aust. Math. Soc., 68, 371-378 (2003) · Zbl 1060.20016
[38] Wei, H.; Wang, Y.; Qian, G., Quasi-central elements and \(p\)-nilpotence of finite groups, Publ. Math. Debrecen, 77, 1-2, 233-244 (2010) · Zbl 1221.20012
[39] Zhang, G., On two theorems of Thompson, Proc. Amer. Math. Soc., 98, 4, 579-582 (1986) · Zbl 0607.20011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.