×

\(p\)-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. (English) Zbl 1177.76194

Summary: We present a \(p\)-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier-Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a \(p = 0\) discretization of the scalar convection-diffusion equation. Fourier analysis of the two-level \(p\)-multigrid algorithm for convection-diffusion shows that element line Jacobi presents a significant improvement over element Jacobi especially for high Reynolds number flows and stretched grids. Results from inviscid and viscous test cases demonstrate optimal \(h^{p + 1}\) order of accuracy as well as \(p\)-independent multigrid convergence rates, at least up to \(p = 3\). In addition, for the smooth problems considered, \(p\)-refinement outperforms \(h\)-refinement in terms of the time required to reach a desired high accuracy level.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

Wesseling
Full Text: DOI

References:

[1] Bassi, F.; Rebay, S., High-order accurate discountinuous finite element solution of the 2-D Euler equations, J. Comput. Phys., 138, 251-285 (1997) · Zbl 0902.76056
[2] Bassi, F.; Rebay, S., A high-order accurate discountinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[3] Bassi, F.; Rebay, S., GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations, (Cockburn, K.; Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications (2000), Springer: Springer Berlin), 197-208 · Zbl 0989.76040
[4] Cockburn, B.; Shu, C. W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[5] Jameson, A., Solution of the Euler equations for two-dimensional transonic flow by a multigrid method, Appl. Math. Comput., 13, 327-356 (1983) · Zbl 0545.76065
[6] Mavriplis, D. J., Multigrid solution of the 2-D Euler equations on unstructured triangular meshes, AIAA J., 26, 824-831 (1988) · Zbl 0667.76088
[7] S.R. Allmaras, Analysis of semi-implicit preconditioners for multigrid solution of the 2-D compressible Navier-Stokes equations, AIAA Paper Number 95-1651-CP, 1995; S.R. Allmaras, Analysis of semi-implicit preconditioners for multigrid solution of the 2-D compressible Navier-Stokes equations, AIAA Paper Number 95-1651-CP, 1995
[8] Pierce, N. A.; Giles, M. B., Preconditioned multigrid methods for compressible flow calculations on stretched meshes, J. Comput. Phys., 136, 425-445 (1997) · Zbl 0893.76061
[9] Mavriplis, D. J., Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes, J. Comput. Phys., 145, 141-165 (1998) · Zbl 0926.76066
[10] Hemker, P.; Hoffmann, W.; van Raalte, M., Two-level fourier analysis of a multigrid approach for discontinuous Galerkin discretisation, SIAM J. Sci. Comput., 25, 1018-1041 (2004) · Zbl 1048.65108
[11] B.T. Helenbrook, D.J. Mavriplis, H.A. Atkins, Analysis of p-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper 2003-3989, 2003; B.T. Helenbrook, D.J. Mavriplis, H.A. Atkins, Analysis of p-multigrid for continuous and discontinuous finite element discretizations, AIAA Paper 2003-3989, 2003
[12] F. Bassi, S. Rebay, Numerical solution of the Euler equations with a multiorder discontinuous finite element method, in: Second International Conference on Computational Fluid Dynamics, Sydney, Australia, 2002; F. Bassi, S. Rebay, Numerical solution of the Euler equations with a multiorder discontinuous finite element method, in: Second International Conference on Computational Fluid Dynamics, Sydney, Australia, 2002 · Zbl 1140.76360
[13] K. Fidkowski, A high-order discontinuous Galerkin multigrid solver for aerodynamic applications, Master’s Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June 2004; K. Fidkowski, A high-order discontinuous Galerkin multigrid solver for aerodynamic applications, Master’s Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, June 2004
[14] T.A. Oliver, Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, Master’s Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, August 2004; T.A. Oliver, Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, Master’s Thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, August 2004
[15] T.A. Oliver, K.J. Fidkowski, D.L. Darmofal, Multigrid solution for high-order discontinuous Galerkin discretization of the compressible Navier-Stokes equations, in: Proceedings of Third International Conference on Computational Fluid Dynamics, Toronto, Canada, 2004 (in press); T.A. Oliver, K.J. Fidkowski, D.L. Darmofal, Multigrid solution for high-order discontinuous Galerkin discretization of the compressible Navier-Stokes equations, in: Proceedings of Third International Conference on Computational Fluid Dynamics, Toronto, Canada, 2004 (in press)
[16] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[17] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[18] Brezzi, F.; Manzini, G.; Marini, D.; Pietra, P.; Russo, A., Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Eqns., 16, 365-378 (2000) · Zbl 0957.65099
[19] Solín, P.; Segeth, K.; Zel, I. D., Higher-Order Finite Element Methods (2003), Chapman & Hall: Chapman & Hall London
[20] Okusanya, T.; Darmofal, D.; Peraire, J., Algebraic multigrid for stabilized finite element discretizations of the Navier-Stokes equations, Comput. Mech. Appl. Math. Eng., 193, 3667-3686 (2004) · Zbl 1068.76051
[21] Rønquist, E. M.; Patera, A. T., Spectral element multigrid I. Formulation and numerical results, J. Sci. Comput., 2, 4, 389-406 (1987) · Zbl 0666.65055
[22] Brandt, A., Guide to Multigrid Development (1982), Springer: Springer Berlin · Zbl 0505.65037
[23] Briggs, W.; Henson, V. E.; McCormick, S. F., A Multigrid Tutorial (2000), SIAM: SIAM Philadelphia, PA · Zbl 0958.65128
[24] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer: Springer Berlin · Zbl 0804.65101
[25] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid (2000), Academic Press: Academic Press London
[26] Wesseling, P., An Introduction to Multigrid Methods (1992), Wiley: Wiley New York · Zbl 0760.65092
[27] R. Radespiel, R. Swanson, An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations, AIAA Paper Number 89-0453, 1989; R. Radespiel, R. Swanson, An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations, AIAA Paper Number 89-0453, 1989
[28] Giles, M. B.; Süli, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer., 11, 145-236 (2002) · Zbl 1105.65350
[29] Anderson, W. K.; Bonhaus, D. L., An implicit upwind algorithm for computing turbulent flows on unstructured grids, Comput. Fluids, 23, 1-21 (1994) · Zbl 0806.76053
[30] E. Nielsen, FUN2D/3D Fully Unstructured Navier-Stokes user manual. NASA Langley Research Center, Computational Modeling and Simulation Branch, Virginia. Available from: <http://fun3d.larc.nasa.gov>; E. Nielsen, FUN2D/3D Fully Unstructured Navier-Stokes user manual. NASA Langley Research Center, Computational Modeling and Simulation Branch, Virginia. Available from: <http://fun3d.larc.nasa.gov>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.