×

A mixed-integer linear programming model and a metaheuristic approach for the selection and allocation of land parcels problem. (English) Zbl 07744721

Summary: This article is about the current agricultural scenario, where large-scale production causes large amounts of food to be transported to various points of consumption, causing substantial emissions of so-called greenhouse gases and increasing the carbon footprint. Land use optimization and land parcel allocation are essential areas of agriculture research that currently represent relevant challenges and are classified as combinatorial optimization problems. In this context, the Selection and Allocation of Land Parcels Problem (SA-LPP) is proposed; its goal is to optimize the selection and allocation of land parcels with rectangular shapes in small areas available for food production. We propose a reformulation of the SA-LPP as a variant of the two-dimensional orthogonal packing problem (2OPP), called Group-2OPP. This problem was solved through a Mixed-Integer Linear Programming (MILP) model, but due to the model complexity, we also propose a Greedy Randomized Adaptive Search Procedure metaheuristic approach. Some sensitivity analyses were performed as well to evaluate the impact of parameters on the solutions. Computational results show that the proposed metaheuristic outperforms the MILP model in terms of solution quality and computational times.
{© 2022 The Authors. International Transactions in Operational Research © 2022 International Federation of Operational Research Societies}

MSC:

90-XX Operations research, mathematical programming

Software:

MiniZinc
Full Text: DOI

References:

[1] Adewale, C., Higgins, S., Granatstein, D., Stöckle, C.O., Carlson, B.R., Zaher, U.E., Carpenter‐Boggs, L., 2016. Identifying hotspots in the carbon footprint of a small scale organic vegetable farm. Agricultural Systems149, 112-121.
[2] Aerts, J.C.J.H., Eisinger, E., Heuvelink, G.B.M., Stewart, T.J., 2003. Using linear integer programming for multi‐site land‐use allocation. Geographical Analysis35, 2, 148-169.
[3] Millennium Ecosystem Assessment,2005. Ecosystems and Human Well‐being: Synthesis. Island Press, Washington, DC.
[4] Cardín‐Pedrosa, M., Alvarez‐López, C.J., 2012. Reprint of: model for decision‐making in agricultural production planning. Computers and Electronics in Agriculture86, 131-139.
[5] Cotter, M., Berkhoff, K., Gibreel, T., Ghorbani, A., Golbon, R., Nuppenau, E.A., Sauerborn, J., 2014. Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization. Ecological Indicators36, 779-787.
[6] Feo, T.A., Resende, M.G.C., 1995. Greedy randomized adaptive search procedures. Journal of Global Optimization6, 2, 109-133. · Zbl 0822.90110
[7] Gharaei, A., Jolai, F., 2019. An ERNSGA‐III algorithm for the production and distribution planning problem in the multiagent supply chain. International Transactions in Operational Research28, 4, 2139-2168. · Zbl 07768697
[8] Gliesch, A., Ritt, M., Moreira, M.C.O., 2017. A genetic algorithm for fair land allocation. Proceedings of the Genetic and Evolutionary Computation Conference. ACM, NY, USA, pp. 793-800.
[9] Gómez, A., Marco, O., deExtensión Agraria, E.S., 1978. Marqueo de plantaciones. Hojas divulgadoras. Ministerio de Agricultura. Publicaciones de Extensión Agraria.
[10] González, X.I., Bert, F., Podestá, G., 2023. Many objective robust decision‐making model for agriculture decisions (MORDMAgro). International Transactions in Operational Research30, 1617-1646. · Zbl 07744717
[11] Haque, A., Asami, Y., 2014. Optimizing urban land use allocation for planners and real estate developers. Computers, Environment and Urban Systems46, 57-69.
[12] Heady, E.O., 1954. Simplified presentation and logical aspects of linear programming technique. Journal of Farm Economics36, 5, 1035-1048.
[13] Jansen, K., Prädel, L., 2016. New approximability results for two‐dimensional bin packing. Algorithmica74, 1, 208-269. · Zbl 1341.90111
[14] Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L., 1974. Worst‐case performance bounds for simple one‐dimensional packing algorithms. SIAM Journal on Computing3, 4, 299-325. · Zbl 0297.68028
[15] Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz‐Carpena, R., Porter, C.H., Rosenzweig, C., Wheeler, T.R., 2017. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agricultural Systems155, 269-288.
[16] Kaim, A., Cord, A.F., Volk, M., 2018. A review of multi‐criteria optimization techniques for agricultural land use allocation. Environmental Modelling & Software105, 79-93.
[17] Kennedy, C.M., Hawthorne, P.L., Miteva, D.A., Baumgarten, L., Sochi, K., Matsumoto, M., Evans, J.S., Polasky, S., Hamel, P., Vieira, E.M., Develey, P.F., Sekercioglu, C.H., Davidson, A.D., Uhlhorn, E.M., Kiesecker, J., 2016. Optimizing land use decision‐making to sustain brazilian agricultural profits, biodiversity and ecosystem services. Biological Conservation204, 221-230.
[18] Khan, A., Noreen, I., Habib, Z., 2017. On complete coverage path planning algorithms for non‐holonomic mobile robots: survey and challenges. Journal of Information Science and Engineering33, 101-121.
[19] Łampika, Ł., Musiał, K., Burduk, A., 2019. Case study of production planning optimization with use of the greedy and tabu search algorithms. In Burduk, A. (ed.), Chlebus, E. (ed.), Nowakowski, T. (ed.), Tubis, A. (ed.) (eds) Intelligent Systems in Production Engineering and Maintenance. Springer, Berlin, pp. 66-75.
[20] Li, F., Gong, Y., Cai, L., Sun, C., Chen, Y., Liu, Y., Jiang, P., 2018. Sustainable land‐use allocation: a multiobjective particle swarm optimization model and application in Changzhou, China. Journal of Urban Planning and Development144, 2, 04018010.
[21] Li, X., Ma, X., 2018. An improved simulated annealing algorithm for interactive multi‐objective land resource spatial allocation. Ecological Complexity36, 184-195.
[22] Liu, X., Li, X., Shi, X., Huang, K., Liu, Y., 2012. A multi‐type ant colony optimization (maco) method for optimal land use allocation in large areas. International Journal of Geographical Information Science26, 7, 1325-1343.
[23] Liu, X., Ou, J., Li, X., Ai, B., 2013. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecological Modelling257, 11-24.
[24] Liu, Y., Tang, D., Kong, X., Liu, Y., Ai, T., 2014. A land‐use spatial allocation model based on modified ant colony optimization. International Journal of Environmental Research (IJER)8, 4, 1115-1126.
[25] Liu, Y., Tang, W., He, J., Liu, Y., Ai, T., Liu, D., 2015a. A land‐use spatial optimization model based on genetic optimization and game theory. Computers, Environment and Urban Systems49, 1-14.
[26] Liu, Y., Yuan, M., He, J., Liu, Y., 2015b. Regional land‐use allocation with a spatially explicit genetic algorithm. Landscape and Ecological Engineering11, 1, 209-219.
[27] Lodi, A., Martello, S., Monaci, M., Vigo, D., 2014. Two‐Dimensional Bin Packing Problems. Wiley, Hoboken, NJ.
[28] Ma, S., He, J., Liu, F., Yu, Y., 2011. Land‐use spatial optimization based on pso algorithm. Geo‐spatial Information Science14, 1, 54-61.
[29] Masoomi, Z., Mesgari, M.S., Hamrah, M., 2013. Allocation of urban land uses by multi‐objective particle swarm optimization algorithm. International Journal of Geographical Information Science27, 3, 542-566.
[30] Memmah, M.M., Lescourret, F., Yao, X., Lavigne, C., 2015. Metaheuristics for agricultural land use optimization. a review. Agronomy for Sustainable Development35, 3, 975-998.
[31] Mohammadi, M., Nastaran, M., Sahebgharani, A., 2016. Development, application, and comparison of hybrid meta‐heuristics for urban land‐use allocation optimization: tabu search, genetic, grasp, and simulated annealing algorithms. Computers, Environment and Urban Systems60, 23-36.
[32] Monardes‐Concha, C., Serrano‐Julio, C., Hoffmann, C., 2023. Linear programming based decision support system for grapes transport planning in CAPEL. International Transactions in Operational Research30, 1874-1900. · Zbl 07744726
[33] Montoya‐Torres, J.R., Aponte, A., Rosas, P., 2011. Applying grasp to solve the multi‐item three‐echelon uncapacitated facility location problem. Journal of the Operational Research Society62, 2, 397-406.
[34] Oksanen, T., Visala, A., 2009. Coverage path planning algorithms for agricultural field machines. Journal of Field Robotics26, 8, 651-668. · Zbl 1176.68216
[35] Osaki, M., Batalha, M.O., 2014. Optimization model of agricultural production system in grain farms under risk, in Sorriso, Brazil. Agricultural Systems127, 178-188.
[36] Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., Edenhofer, O., Elgizouli, I., Field, C.B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez‐Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Cisneroz, B.J., Kattsov, V., Lee, H., Mach, K.J., Marotzke, J., Mastrandrea, M.D., Meyer, L., Minx, J., Mulugetta, Y., O’Brien, K., Oppenheimer, M., Pereira, J.J., Pichs‐Madruga, R., Plattner, G.K., Pörtner, H.O., Power, S.B., Preston, B., Ravindranath, N.H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T.F., Tschakert, P., vanVuuren, D., vanYpserle, J.P., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
[37] Porta, J., Parapar, J., Doallo, R., Barbosa, V., Santé, I., Crecente, R., Díaz, C., 2013. A population‐based iterated greedy algorithm for the delimitation and zoning of rural settlements. Computers, Environment and Urban Systems39, 12-26.
[38] Resende, M.G., Ribeiro, C.C., 2010. Greedy randomized adaptive search procedures: advances, hybridizations, and applications. Springer, Boston, MA. 283-319.
[39] Rubio‐Sánchez, M., Gallego, M., Gortázar, F., Duarte, A., 2016. Grasp with path relinking for the single row facility layout problem. Knowledge‐Based Systems106, 1-13.
[40] Santé, I., Rivera, F.F., Crecente, R., Boullón, M., Suárez, M., Porta, J., Parapar, J., Doallo, R., 2016. A simulated annealing algorithm for zoning in planning using parallel computing. Computers, Environment and Urban Systems59, 95-106.
[41] Seo, M., Shin, H., Tsourdos, A., 2018. Task allocation in agricultural remote sensing applications using submodular maximization algorithm. 2018 37th Chinese Control Conference (CCC), IEEE, Piscataway, NJ, 6860-6865.
[42] Shrouf, F., Ordieres‐Meré, J., García‐Sánchez, A., Ortega‐Mier, M., 2014. Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production67, 197-207.
[43] Stuckey, P.J., Tack, G., 2013. Minizinc with functions. In Laurent Perron, L. (ed.), Trick, M.A. (ed.) (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. Springer, Berlin, 268-283. · Zbl 1382.68234
[44] Tong, J., Wu, C., Jiang, H., Yu, Y., Rao, X., 2017. Optimizing the path of seedling low‐density transplanting by using greedy genetic algorithm. Computers and Electronics in Agriculture142, 356-368.
[45] Verstichel, J., De Causmaecker, P., Berghe, G.V., 2013. An improved best‐fit heuristic for the orthogonal strip packing problem. International Transactions in Operational Research20, 5, 711-730. · Zbl 1274.90330
[46] Wakeland, W., Cholette, S., Venkat, K., 2012. Food Transportation Issues and Reducing Carbon Footprint. Springer, Berlin, 211-236.
[47] Wang, J., Wang, Z., Li, X., Zhou, H., 2022. Artificial bee colony‐based combination approach to forecasting agricultural commodity prices. International Journal of Forecasting38, 21-34.
[48] Wäscher, G., Haußner, H., Schumann, H., 2007. An improved typology of cutting and packing problems. European Journal of Operational Research183, 3, 1109-1130. · Zbl 1278.90347
[49] Yang, L., Sun, X., Peng, L., Shao, J., Chi, T., 2015. An improved artificial bee colony algorithm for optimal land‐use allocation. International Journal of Geographical Information Science29, 8, 1470-1489.
[50] Yang, X., Zheng, X.Q., Lv, L.N., 2012. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling233, 11-19.
[51] Yu, J., Chen, Y., Wu, J., 2011. Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land‐use suitability assessment. Computers, Environment and Urban Systems35, 4, 308-319.
[52] Yue, Q., Xu, X., Hillier, J., Cheng, K., Pan, G., 2017. Mitigating greenhouse gas emissions in agriculture: from farm production to food consumption. Journal of Cleaner Production149, 1011-1019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.