×

A geometrical mass and its extremal properties for metrics on \(S^2\). (English) Zbl 1144.53055

The paper provides some \(2\)-dimensional analogon to the notion of “positive mass” as it enters conformal geometry in dimensions \(3,4,5\) via R. Schoen’s solution of the Yamabe problem (using the positive mass theorem) [J. Differ. Geom. 20, 479–495 (1984; Zbl 0576.53028)]. The geometric quantity defined on closed \(2\)-manifolds is the “geometric mass” given by \(GM(x):=m(x)-{1\over2\pi}\Delta^{-1}K(x)\), where \(K\) is the scalar curvature of the manifold and \(m(x)=\lim_{y\to x} [G(x,y)+{1\over2\pi}\log d(x,y)]\), called “Robin’s mass” by the author, is the manifold’s Green’s function at \(x\) reduced by its obvious singular asymptotics.
It turns out that \(GM(x)\) is actually independent of \(x\) if the manifold is a sphere, while on manifolds of higher genus it usually does depend on \(x\). In the spherical case, \(GM\) is minimized (volumes being fixed) at the standard round metric.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35J60 Nonlinear elliptic equations
53A30 Conformal differential geometry (MSC2010)

Citations:

Zbl 0576.53028
Full Text: DOI

References:

[1] T. Aubin, Some Nonlinear Problems in Riemannian Geometry , Springer Monogr. Math., Springer, Berlin, 1998. · Zbl 0896.53003
[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , Ann. of Math. (2) 138 (1993), 213–242. JSTOR: · Zbl 0826.58042 · doi:10.2307/2946638
[3] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators , Grundlehren Math. Wiss. 298 , Springer, Berlin, 1992. · Zbl 0744.58001
[4] E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(S^n\) , Geom. Funct. Anal. 2 (1992), 90–104. · Zbl 0754.47041 · doi:10.1007/BF01895706
[5] S.-Y. A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on \(4\)-manifolds , Ann. of Math. (2) 142 (1995), 171–212. JSTOR: · Zbl 0842.58011 · doi:10.2307/2118613
[6] J. M. Lee and T. H. Parker, The Yamabe problem , Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37–91. · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[7] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , Ann. of Math. (2) 118 (1983), 349–374. JSTOR: · Zbl 0527.42011 · doi:10.2307/2007032
[8] C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on \(S^n\) , Geom. Funct. Anal. 6 (1996), 146–171. · Zbl 0852.58079 · doi:10.1007/BF02246771
[9] –. –. –. –., “Zeta functions on \(S^2\)” in Extremal Riemann Surfaces (San Francisco, 1995) , Contemp. Math. 201 , Amer. Math. Soc., Providence, 1997, 213–225. · Zbl 0826.11034
[10] K. Okikiolu, Critical metrics for the determinant of the Laplacian in odd dimensions , Ann. of Math. (2) 153 (2001), 471–531. JSTOR: · Zbl 0985.58013 · doi:10.2307/2661347
[11] K. Richardson, Critical points of the determinant of the Laplace operator , J. Funct. Anal. 122 (1994), 52–83. · Zbl 0805.58063 · doi:10.1006/jfan.1994.1061
[12] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature , J. Differential Geom. 20 (1984), 479–495. · Zbl 0576.53028
[13] R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity , Comm. Math. Phys. 65 (1979), 45–76. · Zbl 0405.53045 · doi:10.1007/BF01940959
[14] J. Steiner, Green’s functions, spectral invariants, and a positive mass on spheres , Ph.D. dissertation, University of California, San Diego, La Jolla, 2003.
[15] ——–, Spectral invariants and a geometrical mass on spheres , in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.