×

The trace and the mass of subcritical GJMS operators. (English) Zbl 1383.53033

Summary: Let \(L_g\) be the subcritical GJMS operator (named after C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling) on an even-dimensional compact manifold \((X, g)\) and consider the zeta-regularized trace \(\operatorname{Tr}_\zeta(L_g^{- 1})\) of its inverse. We show that if \(\ker L_g = 0\), then the supremum of this quantity, taken over all metrics \(g\) of fixed volume in the conformal class, is always greater than or equal to the corresponding quantity on the standard sphere. Moreover, we show that in the case when it is strictly larger, the supremum is attained by a metric of constant mass. Using positive mass theorems, we give some geometric conditions for this to happen.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J05 Elliptic equations on manifolds, general theory

References:

[1] Ammann, Bernd; Humbert, Emmanuel, Positive mass theorem for the Yamabe problem on spin manifolds, Geom. Funct. Anal., 15, 3, 567-576 (2005) · Zbl 1087.53045
[2] Aubin, Thierry, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), 55, 3, 269-296 (1976) · Zbl 0336.53033
[3] Aubin, Thierry, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11, 4, 573-598 (1976) · Zbl 0371.46011
[4] Günther, Matthias, Conformal normal coordinates, Ann. Glob. Anal. Geom., 11, 2, 173-184 (1993) · Zbl 0810.53007
[5] Graham, C. Robin; Jenne, Ralph; Mason, Lionel J.; Sparling, George A. J., Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46, 3, 557-565 (1992) · Zbl 0726.53010
[6] Gursky, Matthew J.; Malchiodi, Andrea, A strong maximum principle for the Paneitz operator and a non-local flow for the \(Q\)-curvature, J. Eur. Math. Soc. (JEMS), 17, 9, 2137-2173 (2015) · Zbl 1330.35053
[7] Grubb, Gerd, A resolvent approach to traces and zeta Laurent expansions, (Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds. Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Contemp. Math., vol. 366 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 67-93 · Zbl 1073.58021
[8] Habermann, Lutz, Conformal metrics of constant mass, Calc. Var. Partial Differ. Equ., 12, 3, 259-279 (2001) · Zbl 1037.53014
[9] Hermann, Andreas; Humbert, Emmanuel, About the mass of certain second order elliptic operators, Adv. Math., 294, 596-633 (2016) · Zbl 1338.58012
[10] Humbert, Emmanuel; Raulot, Simon, Positive mass theorem for the Paneitz-Branson operator, Calc. Var. Partial Differ. Equ., 36, 4, 525-531 (2009) · Zbl 1180.53040
[11] Juhl, Andreas, Explicit formulas for GJMS-operators and \(Q\)-curvatures, Geom. Funct. Anal., 23, 4, 1278-1370 (2013) · Zbl 1293.53049
[12] Juhl, Andreas, Heat kernel expansions, ambient metrics and conformal invariants, Adv. Math., 286, 545-682 (2016) · Zbl 1328.58015
[13] Kontsevich, Maxim; Vishik, Simeon, Geometry of determinants of elliptic operators, (Functional Analysis on the Eve of the 21st Century, vol. 1. Functional Analysis on the Eve of the 21st Century, vol. 1, New Brunswick, NJ, 1993. Functional Analysis on the Eve of the 21st Century, vol. 1. Functional Analysis on the Eve of the 21st Century, vol. 1, New Brunswick, NJ, 1993, Progr. Math., vol. 131 (1995), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 173-197 · Zbl 0920.58061
[14] Lee, John M.; Parker, Thomas H., The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 1, 37-91 (1987) · Zbl 0633.53062
[15] Ludewig, Matthias, Asymptotic expansions and conformal covariance of the mass of conformal differential operators, Ann. Glob. Anal. Geom., 52, 237-268 (2017) · Zbl 1379.35067
[16] Morpurgo, Carlo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on \(S^n\), Geom. Funct. Anal., 6, 1, 146-171 (1996) · Zbl 0852.58079
[17] Morpurgo, Carlo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J., 114, 3, 477-553 (2002) · Zbl 1065.58022
[18] Okikiolu, Kate, Extremals for logarithmic Hardy-Littlewood-Sobolev inequalities on compact manifolds, Geom. Funct. Anal., 17, 5, 1655-1684 (2008) · Zbl 1140.58003
[19] Okikiolu, Kate, A negative mass theorem for the 2-torus, Commun. Math. Phys., 284, 3, 775-802 (2008) · Zbl 1167.53038
[20] Okikiolu, Kate, A negative mass theorem for surfaces of positive genus, Commun. Math. Phys., 290, 3, 1025-1031 (2009) · Zbl 1184.53046
[21] Paneitz, Stephen M., A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl., 4, Article 036 pp. (2008) · Zbl 1145.53053
[22] Ponge, Raphaël, The logarithmic singularities of the Green functions of the conformal powers of the Laplacian, (Geometric and Spectral Analysis. Geometric and Spectral Analysis, Contemp. Math., vol. 630 (2014), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 247-273 · Zbl 1350.53053
[23] Trudinger, Neil S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, 3, 22, 265-274 (1968) · Zbl 0159.23801
[24] Wodzicki, Mariusz, Local invariants of spectral asymmetry, Invent. Math., 75, 1, 143-177 (1984) · Zbl 0538.58038
[25] Yamabe, Hidehiko, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12, 21-37 (1960) · Zbl 0096.37201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.