×

A Yamabe type problem on compact spin manifolds. (Un problème de type Yamabe sur les variétés spinorielles compactes.) (French. Abridged English version) Zbl 1053.58011

Let \((M,g,\sigma)\) be a compact spin manifold of dimension \(n\geq 2\). For a metric \(\tilde{g}\) in the conformal class \([g]\) of \(g\), let \(\lambda_1^+(\tilde{g})\) [resp. \(\lambda_1^-(\tilde{g})\)] be the smallest positive (resp. largest negative) eigenvalue of the Dirac operator \(D\) in the metric \(\tilde{g}\). The conformal invariants \(\lambda_{\min}^+(M,[g],\sigma):=\inf_{\tilde{g}\in [g]}\lambda_1^+(\tilde{g}) \text{Vol}(M,\tilde{g})^{1/n}\) and \(\lambda_{\min}^-(M,[g],\sigma):=\inf_{\tilde{g}\in [g]}| \lambda_1^-(g)|\text{Vol}(M,\tilde{g})^{1/n}\) have been studied by many authors [for example, see O. Hijazi, Commun. Math. Phys. 104, 151–162 (1986; Zbl 0593.58040); J. Lott, Pac. J. Math. 125, 117–126 (1986; Zbl 0605.58044); C. Bär, Math. Ann. 293, 39–46 (1992; Zbl 0741.58046); the first author, “The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions” (Preprint, arXiv math. DG/0309061) and “A variational problem in conformal spin geometry” (Habilitationsschrift, Univ. Hamburg, May 2003)]. The authors show that the inequalities \[ \lambda_{\min}^+(M,[g],\sigma)\leq \lambda_{\min}^+(S^n)=\frac{n}{2}\omega_n^{1/n}\tag{1} \] and \[ \lambda_{\min}^-(M,[g],\sigma)\leq \lambda_{\min}^-(S^n)=\lambda_{\min}^+(S^n)\tag{2} \] are true, where \(\omega_n\) denotes the volume of the unit standard sphere \(S^n\) (see also the first author, loc. cit.). Moreover, if \((M,g)\) is nonconformally flat and \(n\geq 7\), then both inequalities are strict. If \((M,g)\) is conformally flat, \(D\) is invertible and the mass endomorphism [for this concept, see also the authors, “Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds” (Preprint Inst. É. Cartan, Nancy 2003/58)] possesses a negative (resp. positive) eigenvalue, then inequality (1) [resp. (2)] is also strict.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C27 Spin and Spin\({}^c\) geometry
Full Text: DOI

References:

[1] Ammann, B., A spin-conformal lower bound of the first positive Dirac eigenvalue, Differential Geom. Appl., 18, 21-32 (2003) · Zbl 1030.58020
[2] Ammann, B., The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Preprint, arXiv · Zbl 1185.58013
[3] B. Ammann, A variational problem in conformal spin geometry, Habilitationsschrift, Universität Hamburg, May 2003; B. Ammann, A variational problem in conformal spin geometry, Habilitationsschrift, Universität Hamburg, May 2003
[4] Ammann, B.; Humbert, E.; Morel, B., On a nonlinear Dirac equation of Yamabe type, Preprint, arXiv · Zbl 1087.53045
[5] B. Ammann, E. Humbert, B. Morel, Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds, Preprint Inst. É. Cartan, Nancy 2003/58; B. Ammann, E. Humbert, B. Morel, Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds, Preprint Inst. É. Cartan, Nancy 2003/58 · Zbl 1126.53024
[6] Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), 55, 269-296 (1976) · Zbl 0336.53033
[7] Bär, C., Lower eigenvalue estimates for Dirac operators, Math. Ann., 293, 39-46 (1992) · Zbl 0741.58046
[8] Bourguignon, J.-P.; Gauduchon, P., Spineurs, opérateurs de Dirac et variations de métriques, Commun. Math. Phys., 144, 581-599 (1992) · Zbl 0755.53009
[9] Hebey, E., Introduction à l’analyse non-linéaire sur les variétés (1997), Diderot · Zbl 0918.58001
[10] Hijazi, O., A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys., 104, 151-162 (1986) · Zbl 0593.58040
[11] Hijazi, O., Première valeur propre de l’opérateur de Dirac et nombre de Yamabe, C. R. Acad. Sci. Paris, Sér. I, 313, 865-868 (1991) · Zbl 0738.53030
[12] Lee, J. M.; Parker, T. H., The Yamabe problem, Bull. Am. Math. Soc. (N.S.), 17, 37-91 (1987) · Zbl 0633.53062
[13] Lott, J., Eigenvalue bounds for the Dirac operator, Pacific J. Math., 125, 117-126 (1986) · Zbl 0605.58044
[14] Okikiolu, K., Critical metrics for the determinant of the Laplacian in odd dimensions, Ann. of Math., 153, 2, 471-531 (2001) · Zbl 0985.58013
[15] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., 20, 479-495 (1984) · Zbl 0576.53028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.