×

Logarithmic Hardy-Littlewood-Sobolev inequality on pseudo-Einstein 3-manifolds and the logarithmic Robin mass. (English) Zbl 1529.53026

Summary: Given a three-dimensional pseudo-Einstein CR manifold \((M,T^{1,0}M,\theta)\), we study the existence of a contact structure conformal to \(\theta\) for which the logarithmic Hardy-Littlewood-Sobolev (LHLS) inequality holds. Our approach closely follows [K. Okikiolu, Geom. Funct. Anal. 17, No. 5, 1655–1684 (2008; Zbl 1140.58003)] in the Riemannian setting, yet the differential operators that we are dealing with are of very different nature. For this reason, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green’s function of the \(P^{\prime}\)-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. This can be tied to the value of the regularized Zeta function of the operator at \(1\) and hence we prove a CR version of the results in [C. Morpurgo, Geom. Funct. Anal. 6, No. 1, 146–171 (1996; Zbl 0852.58079)]. We also exhibit an Aubin-type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.

MSC:

53C17 Sub-Riemannian geometry
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
32V20 Analysis on CR manifolds

References:

[1] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55(3) (1976), 269-296. · Zbl 0336.53033
[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138(1) (1993), 213-242. DOI: . · Zbl 0826.58042 · doi:10.2307/2946638
[3] L. Boutet de Monvel and V. Guillemin, “The Spectral Theory of Toeplitz Operators”, Annals of Mathematics Studies 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. DOI: . · Zbl 0469.47021 · doi:10.1515/9781400881444
[4] T. P. Branson, L. Fontana, and C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2) 177(1) (2013), 1-52. DOI: . · Zbl 1334.35366 · doi:10.4007/annals.2013.177.1.1
[5] T. Branson and A. R. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature, Comm. Partial Differential Equations 30(11) (2005), 1611-1669. DOI: . · Zbl 1226.58011 · doi:10.1080/03605300500299943
[6] E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \[S^n\], Geom. Funct. Anal. 2(1) (1992), 90-104. DOI: . · Zbl 0754.47041 · doi:10.1007/BF01895706
[7] J. S. Case, S. Chanillo, and P. Yang, A remark on the kernel of the CR Paneitz operator, Nonlinear Anal. 126 (2015), 153-158. DOI: . · Zbl 1321.32012 · doi:10.1016/j.na.2015.04.001
[8] J. S. Case, J.-H. Cheng, and P. Yang, An integral formula for the \[Q\]-prime curvature in \[3\]-dimensional CR geometry, Proc. Amer. Math. Soc. 147(4) (2019), 1577-1586. DOI: . · Zbl 1414.32031 · doi:10.1090/proc/14328
[9] J. S. Case, C.-Y. Hsiao, and P. Yang, Extremal metrics for the \[Q'\]-curvature in three dimensions, J. Eur. Math. Soc. (JEMS) 21(2) (2019), 585-626. DOI: . · Zbl 1444.32034 · doi:10.4171/JEMS/845
[10] J. S. Case and P. Yang, A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.) 8(3) (2013), 285-322. · Zbl 1316.32021
[11] S.-Y. A. Chang, Conformal invariants and partial differential equations, Bull. Amer. Math. Soc. (N.S.) 42(3) (2005), 365-393. DOI: . · Zbl 1087.53019 · doi:10.1090/S0273-0979-05-01058-X
[12] S.-C. Chang, T.-J. Kuo, and T. Saotome, Global existence and convergence for the CR \[Q\]-curvature flow in a closed strictly pseudoconvex CR 3-manifold, Preprint (2019). arXiv:.
[13] S.-Y. A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on \[4\]-manifolds, Ann. of Math. (2) 142(1) (1995), 171-212. DOI: . · Zbl 0842.58011 · doi:10.2307/2118613
[14] S. Chanillo, H.-L. Chiu, and P. Yang, Embeddability for \[3\]-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke Math. J. 161(15) (2012), 2909-2921. DOI: . · Zbl 1271.32040 · doi:10.1215/00127094-1902154
[15] J.-H. Cheng, A. Malchiodi, and P. Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Adv. Math. 308 (2017), 276-347. DOI: . · Zbl 1360.32031 · doi:10.1016/j.aim.2016.12.012
[16] C. Fefferman and C. R. Graham, \[Q\]-curvature and Poincaré metrics, Math. Res. Lett. 9(2-3) (2002), 139-151. DOI: . · Zbl 1016.53031 · doi:10.4310/MRL.2002.v9.n2.a2
[17] G. B. Folland and E. M. Stein, Estimates for the \[\bar \partial_b\] complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27(4) (1974), 429-522. DOI: . · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[18] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176(1) (2012), 349-381. DOI: . · Zbl 1252.42023 · doi:10.4007/annals.2012.176.1.6
[19] C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling, Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc. (2) 46(3) (1992), 557-565. DOI: . · Zbl 0726.53010 · doi:10.1112/jlms/s2-46.3.557
[20] K. Hirachi, Scalar pseudo-Hermitian invariants and the Szegö kernel on three-dimensional CR manifolds, in: “Complex Geometry” (Osaka, 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993.
[21] P. T. Ho, Prescribing the \[Q'\]-curvature in three dimension, Discrete Contin. Dyn. Syst. 39(4) (2019), 2285-2294. DOI: . · Zbl 1412.32027 · doi:10.3934/dcds.2019096
[22] C.-Y. Hsiao, On CR Paneitz operators and CR pluriharmonic functions, Math. Ann. 362(3-4) (2015), 903-929. DOI: . · Zbl 1333.32036 · doi:10.1007/s00208-014-1151-2
[23] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25(2) (1987), 167-197. DOI: . · Zbl 0661.32026 · doi:10.4310/jdg/1214440849
[24] J. M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110(1) (1988), 157-178. DOI: . · Zbl 0638.32019 · doi:10.2307/2374543
[25] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related in-equalities, Ann. of Math. (2) 118(2) (1983), 349-374. DOI: . · Zbl 0527.42011 · doi:10.2307/2007032
[26] A. Maalaoui, Prescribing the \[\overline{Q}^{\prime} \]-curvature on pseudo-Einstein CR 3-manifolds, Preprint (2019). arXiv:. · Zbl 1510.32084
[27] C. Morpurgo, The logarithmic Hardy-Littlewood-Sobolev inequality and extremals of zeta functions on \[S^n\], Geom. Funct. Anal. 6(1) (1996), 146-171. DOI: . · Zbl 0852.58079 · doi:10.1007/BF02246771
[28] C. Morpurgo, Zeta functions on \[S^2\], in: “Extremal Riemann Surfaces” (San Francisco, CA, 1995), Contemp. Math. 201, Amer. Math. Soc., Providence, RI, 1997, pp. 213-225. DOI: . · Zbl 0867.58060 · doi:10.1090/conm/201/02611
[29] C. Morpurgo, Sharp inequalities for functional integrals and traces of conformally invariant operators, Duke Math. J. 114(3) (2002), 477-553. DOI: . · Zbl 1065.58022 · doi:10.1215/S0012-7094-02-11433-1
[30] K. Okikiolu, Extremals for logarithmic Hardy-Littlewood-Sobolev inequalities on compact manifolds, Geom. Funct. Anal. 17(5) (2008), 1655-1684. DOI: . · Zbl 1140.58003 · doi:10.1007/s00039-007-0636-5
[31] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44(3) (1977), 695-704. DOI: . · Zbl 0392.32014 · doi:10.1215/S0012-7094-77-04429-5
[32] R. Ponge, Noncommutative residue for Heisenberg manifolds. Applications in CR and contact geometry, J. Funct. Anal. 252(2) (2007), 399-463. DOI: . · Zbl 1127.58024 · doi:10.1016/j.jfa.2007.07.001
[33] R. S. Ponge, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc. 194(906) (2008), 134 pp. DOI: . · Zbl 1143.58014 · doi:10.1090/memo/0906
[34] J. Steiner, Green’s functions, spectral invariants, and a positive mass on spheres, Thesis (Ph.D.)-University of California, San Diego (2003).
[35] J. Steiner, A geometrical mass and its extremal properties for metrics on \[S^2\], Duke Math. J. 129(1) (2005), 63-86. DOI: . · Zbl 1144.53055 · doi:10.1215/S0012-7094-04-12913-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.