×

Complex zeros of real ergodic eigenfunctions. (English) Zbl 1134.37005

Summary: We determine the limit distribution (as \(\lambda \rightarrow \infty\)) of complex zeros for holomorphic continuations \(\varphi_\lambda^{\mathbb C}\) to Grauert tubes of real eigenfunctions of the Laplacian on a real analytic compact Riemannian manifold \((M, g)\) with ergodic geodesic flow. If \(\{\varphi_{j_k}\}\) is an ergodic sequence of eigenfunctions, we prove the weak limit formula \(\frac{1}{\lambda_j[Z_{\varphi_{j_k}^{\mathbb{C}}}]}\;\to\;\frac{i}{\pi} \partial\bar{\partial} |\xi|_g\), where \([Z_{\varphi_{j_k}^{\mathbb{C}}}]\) is the current of integration over the complex zeros and where \(\overline\partial\) is with respect to the adapted complex structure of L. Lempert and R. Szőke [Math. Ann. 290, No. 4, 689–712 (1991; Zbl 0752.32008)] and V. Guillemin and M. Stenzel [J. Differ. Geom. 34, No. 2, 561–570 (1991; Zbl 0746.32005)].

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P05 General topics in linear spectral theory for PDEs
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C20 Global Riemannian geometry, including pinching
53D25 Geodesic flows in symplectic geometry and contact geometry

References:

[1] Anantharaman, N., Zelditch, S.: Patterson-Sullivan distributions and quantum ergodicity. To appear in Ann. Henri Poincaré (arXiv: math.SP/0601776)
[2] Bérard, P.: On the wave equation on a compact riemannian manifold without conjugate points. Math. Z. 155(3), 249–276 (1977) · doi:10.1007/BF02028444
[3] Boutet de Monvel, L.: Convergence dans le domaine complexe des séries de fonctions propres. C. R. Acad. Sci., Paris, Sér. A–B 287(13), A855–A856 (1978) · Zbl 0392.35043
[4] Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton, NJ (1981) · Zbl 0469.47021
[5] Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Asterisque 34–35, 123–164 (1976) · Zbl 0344.32010
[6] Bruhat, F., Whitney, H.: Quelques propriétés fondamentales des ensembles analytiques-réels. Comment. Math. Helv. 33, 132–160 (1959) · Zbl 0100.08101 · doi:10.1007/BF02565913
[7] Colin de Verdiére, Y.: Ergodicité et fonctions propres du laplacien. Comm. Math. Phys. 102(3), 497–502 (1985) · Zbl 0592.58050 · doi:10.1007/BF01209296
[8] Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93, 161–183 (1988) · Zbl 0659.58047 · doi:10.1007/BF01393691
[9] Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[10] Golse, F., Leichtnam, E., Stenzel, M.: Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds. Ann. Sci. Éc. Norm. Supér., IV. Sér. 29(6), 669–736 (1996) · Zbl 0889.32037
[11] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331–368 (1962) · Zbl 0173.33004 · doi:10.1007/BF01441136
[12] Guillemin, V.: The homogeneous Monge-Ampere equation on a pseuodoconvex domain. Asterisque 210, 97–113 (1992) · Zbl 0804.35002
[13] Guillemin, V., Okikiolu, K.: Subprincipal terms in Szegö estimates. Math. Res. Lett. 4, 173–179 (1997) · Zbl 0881.58064
[14] Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampère equation. J. Differ. Geom. 34(2), 561–570 (1991) · Zbl 0746.32005
[15] Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampère equation. II. J. Differ. Geom. 35(3), 627–641 (1992) · Zbl 0789.32010
[16] Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence, RI (2000) · Zbl 0965.43007
[17] Hörmander, L.: The Analysis of Linear Partial Differential Operators. Grund. Math. Wiss., vols. 256, 274. Springer, New York (1983) · Zbl 0521.35002
[18] Jerison, D., Lebeau, G.: Nodal sets of sums of eigenfunctions. In: Harmonic analysis and partial differential equations, pp. 223–239. Chicago, IL 1996. Chicago Lect. Math. Univ. Chicago Press, Chicago, IL (1999) · Zbl 0946.35055
[19] Kan, S.-J., Ma, D.: On rigidity of Grauert tubes over Riemannian manifolds of constant curvature. Math. Z. 239(2), 353–363 (2002) · Zbl 1010.32007 · doi:10.1007/s002090100300
[20] Laptev, A., Robert, D., Safarov, Yu.: Remarks on the paper of V. Guillemin and K. Okikiolu ”Subprincipal terms in Szegö estimates” [Math. Res. Lett. 4(1), 173–179 (1997)]. Math. Res. Lett. 5(1–2), 57–61 (1998) · Zbl 0917.58046
[21] Lempert, L., Szöke, R.: Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4), 689–712 (1991) · Zbl 0752.32008 · doi:10.1007/BF01459268
[22] Lempert, L., Szöke, R.: The tangent bundle of an almost complex manifold. Can. Math. Bull. 44(1), 70–79 (2001) · Zbl 0984.53029 · doi:10.4153/CMB-2001-008-6
[23] Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. 163, 165–219 (2006) · Zbl 1104.22015 · doi:10.4007/annals.2006.163.165
[24] Melin, A., Sjöstrand, J.: Fourier integral operators with complex-valued phase functions. In: Fourier integral operators and partial differential equations. Colloq. Internat., Univ. Nice, Nice, 1974. Lect. Notes Math., vol. 459, pp. 120–223. Springer, Berlin (1975) · Zbl 0296.42023
[25] Nazarov, F., Polterovich, L., Sodin, M.: Sign and area in nodal geometry of Laplace eigenfunctions. Am. J. Math. 127, 879–910 (2005) (math.AP/0402412) · Zbl 1079.58026 · doi:10.1353/ajm.2005.0030
[26] Neuheisel, J.: The asymptotic distribution of nodal sets on spheres. Ph.D. thesis, Johns Hopkins University (2000)
[27] Nonnenmacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Stat. Phys. 92(3–4), 431–518 (1998) · Zbl 1079.81530 · doi:10.1023/A:1023080303171
[28] Patrizio, G., Wong, P.M.: Stein manifolds with compact symmetric center. Math. Ann. 289(3), 355–382 (1991) · Zbl 0729.32003 · doi:10.1007/BF01446577
[29] Rudnick, Z.: On the asymptotic distribution of zeros of modular forms. Int. Math. Res. Not. 34, 2059–2074 (2005) (math.NT/0506267) · Zbl 1162.11345 · doi:10.1155/IMRN.2005.2059
[30] Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161(1), 195–213 (1994) · Zbl 0836.58043 · doi:10.1007/BF02099418
[31] Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Comm. Math. Phys. 200(3), 661–683 (1999) · Zbl 0919.32020 · doi:10.1007/s002200050544
[32] Shnirelman, A.I.: Ergodic properties of eigenfunctions. Usp. Mat. Nauk 29(6), 181–182 (1974) · Zbl 0324.58020
[33] Tréves, F.: Introduction to pseudodifferential and Fourier integral operators. Vol. 2. Fourier integral operators. The University Series in Mathematics. Plenum Press, New York London (1980) · Zbl 0453.47027
[34] Zelditch, S.: Quantum ergodicity of C * dynamical systems. Comm. Math. Phys. 177, 507–528 (1996) · Zbl 0856.58019 · doi:10.1007/BF02101904
[35] Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
[36] Zelditch, S.: A random matrix model for quantum mixing. Int. Math. Res. Not. 3, 115–137 (1996) · Zbl 0858.58048 · doi:10.1155/S1073792896000116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.