×

The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups. (English) Zbl 1498.43005

Summary: We show that the \(\beta \)-numbers of intrinsic Lipschitz graphs of Heisenberg groups \(\mathbb{H}_n\) are locally Carleson integrable when \(n\geq 2\). Our main bound uses a novel slicing argument to decompose intrinsic Lipschitz graphs into graphs of Lipschitz functions. A key ingredient in our proof is a Euclidean inequality that bounds the \(\beta \)-numbers of the original graph in terms of the \(\beta \)-numbers of many families of slices. This allows us to use recent work of K. Fässler and T. Orponen [Bull. Lond. Math. Soc. 52, No. 3, 472–488 (2020; Zbl 1457.46046)] which asserts that Lipschitz functions satisfy a Dorronsoro inequality.

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
28A75 Length, area, volume, other geometric measure theory
05C99 Graph theory
53C17 Sub-Riemannian geometry

Citations:

Zbl 1457.46046

References:

[1] L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555. · Zbl 0966.28002
[2] L. Ambrosio and P. Tilli, Topics on analysis in metric spaces, Oxford Lecture Ser. Math. Appl. 25, Oxford University, Oxford 2004. · Zbl 1080.28001
[3] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, Amer. Math. Soc. Colloq. Publ. 48, American Mathematical Society, Providence 2000. · Zbl 0946.46002
[4] R. Berndt, An introduction to symplectic geometry, Grad. Stud. Math. 26, American Mathematical Society, Providence 2001. · Zbl 0986.53028
[5] V. Chousionis, K. Fässler and T. Orponen, Boundedness of singular integrals on C^{1,\alpha} intrinsic graphs in the Heisenberg group, Adv. Math. 354 (2019), Article ID 106745. · Zbl 1427.42017
[6] V. Chousionis, K. Fässler and T. Orponen, Intrinsic Lipschitz graphs and vertical β-numbers in the Heisenberg group, Amer. J. Math. 141 (2019), no. 4, 1087-1147. · Zbl 1426.43003
[7] V. Chousionis, S. Li and S. Zimmerman, The traveling salesman theorem in Carnot groups, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 14. · Zbl 1405.28003
[8] G. David and S. Semmes, Singular integrals and rectifiable sets in \(\mathbf{R}}^{n\): Beyond Lipschitz graphs, Astérisque 193, Société Mathématique de France, Paris 1991. · Zbl 0743.49018
[9] G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Math. Surveys Monogr. 38, American Mathematical Society, Providence 1993. · Zbl 0832.42008
[10] G. C. David and R. Schul, The analyst’s traveling salesman theorem in graph inverse limits, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 649-692. · Zbl 1376.28003
[11] K. Fässler and T. Orponen, Riesz transform and vertical oscillation in the Heisenberg group, preprint (2018), https://arxiv.org/abs/1810.13122.
[12] K. Fässler and T. Orponen, Dorronsoro’s theorem in Heisenberg groups, Bull. Lond. Math. Soc. 52 (2020), no. 3, 472-488. · Zbl 1457.46046
[13] K. Fässler, T. Orponen and S. Rigot, Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group, Trans. Amer. Math. Soc. 373 (2020), no. 8, 5957-5996. · Zbl 1446.28005
[14] F. Ferrari, B. Franchi and H. Pajot, The geometric traveling salesman problem in the Heisenberg group, Rev. Mat. Iberoam. 23 (2007), no. 2, 437-480. · Zbl 1142.28004
[15] B. Franchi, R. Serapioni and F. Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups, J. Nonlinear Convex Anal. 7 (2006), no. 3, 423-441. · Zbl 1151.58005
[16] B. Franchi, R. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), no. 4, 1044-1084. · Zbl 1234.22002
[17] B. Franchi and R. P. Serapioni, Intrinsic Lipschitz graphs within Carnot groups, J. Geom. Anal. 26 (2016), no. 3, 1946-1994. · Zbl 1352.22008
[18] P. W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial 1987), Lecture Notes in Math. 1384, Springer, Berlin (1989), 24-68. · Zbl 0675.30029
[19] P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15. · Zbl 0731.30018
[20] S. Li, Stratified β-numbers and traveling salesman in Carnot groups, preprint (2019), https://arxiv.org/abs/1902.03268.
[21] S. Li and R. Schul, An upper bound for the length of a traveling salesman path in the Heisenberg group, Rev. Mat. Iberoam. 32 (2016), no. 2, 391-417. · Zbl 1355.28005
[22] S. Li and R. Schul, The traveling salesman problem in the Heisenberg group: Upper bounding curvature, Trans. Amer. Math. Soc. 368 (2016), no. 7, 4585-4620. · Zbl 1350.53044
[23] P. Mattila, R. Serapioni and F. Serra Cassano, Characterizations of intrinsic rectifiability in Heisenberg groups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 4, 687-723. · Zbl 1229.28004
[24] A. Naor and R. Young, Vertical perimeter versus horizontal perimeter, Ann. of Math. (2) 188 (2018), no. 1, 171-279. · Zbl 1397.46020
[25] A. Naor and R. Young, Foliated corona decompositions, preprint (2020), https://arxiv.org/abs/2004.12522.
[26] K. Okikiolu, Characterization of subsets of rectifiable curves in \(\mathbf{R}}^{n\), J. Lond. Math. Soc. (2) 46 (1992), no. 2, 336-348. · Zbl 0758.57020
[27] T. Orponen, An integralgeometric approach to Dorronsoro estimates, Int. Math. Res. Not. IMRN 2021 (2021), no. 22, 17170-17200. · Zbl 1487.41036
[28] S. Rigot, Quantitative notions of rectifiability in the Heisenberg groups, preprint (2019), https://arxiv.org/abs/1904.06904.
[29] R. Schul, Subsets of rectifiable curves in Hilbert space—the analyst’s TSP, J. Anal. Math. 103 (2007), 331-375. · Zbl 1152.28006
[30] F. Serra Cassano, Some topics of geometric measure theory in Carnot groups, Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Ser. Lect. Math., European Mathematical Society, Zürich (2016), 1-121. · Zbl 1388.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.