×

A variational method for finite element stress recovery and error estimation. (English) Zbl 0845.73074

Summary: A variational method for obtaining smoothed stresses from a finite element derived non-smooth stress field is presented. The method is based on minimizing a functional involving discrete least-squares error plus a penalty constraint that ensures smoothness of the stress field. An equivalent accuracy criterion is developed for the smoothing analysis which results in a \(C^1\)-continuous smoothed stress field possessing the same order of accuracy as that found at the superconvergent optimal stress points of the original finite element analysis. Application of the smoothing analysis to residual error estimation is also demonstrated.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74B10 Linear elasticity with initial stresses
Full Text: DOI

References:

[1] Oden, J. T.; Brauchli, H. J., On the calculation of consistent stress distributions in finite element approximations, Internat. J. Numer. Methods Engrg., 3, 317-325 (1971) · Zbl 0251.73056
[2] Hinton, E.; Campbell, J. S., Local and global smoothing of discontinuous finite element functions using a least squares method, Internat. J. Numer. Methods Engrg., 8, 461-480 (1974) · Zbl 0286.73066
[3] Oden, J. T.; Reddy, J. N., Note on an approximate method for computing consistent conjugate stresses in elastic finite elements, Internat. J. Numer. Methods. Engrg., 6, 55-61 (1973) · Zbl 0252.73057
[4] Barlow, J., Optimal stress locations in finite element models, Internat. J. Numer. Methods Engrg., 10, 243-251 (1976) · Zbl 0322.73049
[5] Barlow, J., More on optimal stress points - Reduced integration, element distortions and error estimation, Internat. J. Numer. Methods Engrg., 28, 1487-1504 (1989) · Zbl 0717.73053
[6] MacKinnon, R. J.; Carey, G. F., Super-convergent derivatives: A Taylor series analysis, Internal. J. Numer. Methods Engrg., 28, 489-509 (1989) · Zbl 0709.73073
[7] Krizek, M.; Neittaanmaki, P., On superconvergence techniques, Acta Appl. Math., 9, 175-198 (1987) · Zbl 0624.65107
[8] Zienkiewicz, O. C.; Zhu, J. Z., Superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg, 33, 1331-1364 (1992) · Zbl 0769.73084
[9] Tessler, A.; Freese, C.; Anastasi, R.; Serabian, S.; Oplinger, D.; Katz, A., Least-squares penalty-constraint finite element method for generating strain fields from Moiré fringe patterns, (Proc. SPIE: Photomech. Speckle Metrology, 814 (1987)), 314-323
[10] Hinton, E.; Irons, B., Least squares smoothing of experimental data using finite elements, J. Strain, 4, 24-27 (1968)
[11] Tessler, A.; Freese, C., A global penalty-constraint finite element formulation for effective strain and stress recovery, (Proc. Internat. Conf. Comput. Engrg. Science (1991), ICES Publications: ICES Publications Melbourne, Australia), 1120-1123
[12] Tessler, A.; Hughes, T. J.R, A three-node Mindlin plate element with improved transverse shear, Comput. Methods Appl. Mech. Engrg., 50, 71-101 (1985) · Zbl 0562.73069
[13] Tessler, A., A priori identification of shear locking and stiffening in triangular Mindlin elements, Comput. Methods Appl. Mech. Engrg., 53, 183-200 (1985) · Zbl 0553.73064
[14] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 337-357 (1987) · Zbl 0602.73063
[15] Babuška, I.; Rheinboldt, W. C., A posteriori error analysis of finite element solutions for one-dimensional problems, SIAM J. Numer. Anal., 18, 565-589 (1981) · Zbl 0487.65060
[16] Kelly, D. W.; de Gago, J. P.; Zienkiewicz, O. C.; Babuška, I., A posteriori error analysis and adaptive processes in the finite element method: Part I: Error analysis; Part II: Adaptive mesh refinement, Internat. J. Numer. Methods Engrg., 19, 1593-1656 (1983) · Zbl 0534.65069
[17] Kelly, D. W.; Mills, R. J.; Reizes, J. A., A posteriori estimates of the solution error caused by discretization in the finite element, finite difference and boundary element methods, Internat. J. Numer. Methods Engrg., 24, 1921-1936 (1987) · Zbl 0625.65096
[18] Ohtsubo, H.; Kitamura, M., Element by element a posteriori error estimation and improvement of stress solutions for two-dimensional elastic problems, Internat. J. Numer. Methods Engrg., 29, 223-244 (1990) · Zbl 0721.73042
[19] Ohtsubo, H.; Kitamura, M., Element by element a posteriori error estimation of the finite element analysis for three-dimensional elastic problems, Internat. J. Numer. Methods Engrg., 33, 1755-1769 (1992) · Zbl 0775.73283
[20] Ohtsubo, H.; Kitamura, M., Numerical investigation of element-wise a posteriori error estimation in two and three dimensional elastic problems, Internat. J. Numer. Methods. Engrg., 34, 969-977 (1992)
[21] Baehmann, P. L.; Shephard, M. S.; Flaherty, J. E., A posteriori error estimation for triangular and tetrahedral quadratic elements using interior residuals, Internat. J. Numer. Methods Engrg., 34, 979-996 (1992) · Zbl 0825.73837
[22] Tessler, A.; Saether, E., A computationally viable higher-order theory for laminated composite plates, Internat. J. Numer. Methods Engrg., 31, 1069-1086 (1991) · Zbl 0825.73987
[23] Tessler, A.; Dong, S. B., On a hierarchy of conforming Timoshenko beam elements, Comput. & Structures, 14, 335-344 (1981)
[24] Peterson, R. E., Stress Concentration Design Factors, ((1953), Wiley: Wiley New York), 84
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.