×

Optimal decentralized control of large scale systems. (English) Zbl 1374.93019

Summary: This paper presents a new optimized decentralized controller design method for solving the tracking and disturbance rejection problems for large-scale linear time-invariant systems, using only low-order decentralized controllers. To illustrate the type of results which can be obtained using the new optimized decentralized control design method, the control of a large flexible space structure is studied and compared with the standard centralized LQR-observer controller. The order of the resultant decentralized controller is much smaller than that of the standard centralized LQR-observer controller. The proposed controller also has certain fail-safe properties and, in addition, it can be five orders of magnitude more robust than the standard LQR-observer controller based on their real stability radii. The new decentralized controller design method is applied to a large flexible space structure system with 5 inputs and 5 outputs and of order 24.

MSC:

93A14 Decentralized systems
93A15 Large-scale systems
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: DOI

References:

[1] M. J. Balas. Active control of flexible systems. Journal of Optimization Theory and Applications, 1978, 25(3): 415–436. · Zbl 0362.93008 · doi:10.1007/BF00932903
[2] P. C. Hughes, R. E. Skelton. Modal truncation for flexible spacecraft. Journal of Guidance and Control, 1981, 4(3): 291–297. · doi:10.2514/3.56081
[3] L. Meirovitch, H. Oz. Modal-space control of large flexible spacecraft possessing ignorable coordinates. Journal of Guidance and Control, 1980, 3(6): 569–577. · Zbl 0471.93039 · doi:10.2514/3.56035
[4] M. J. Balas. Modal control of certain flexible dynamic systems. SIAM Journal of Control and Optimization, 1978, 16(3): 450–462. · Zbl 0384.93036 · doi:10.1137/0316030
[5] I. Bar-Kana, R. Fischl, P. Kalata. Direct position plus velocity feedback control of large flexible space structures. IEEE Transactions on Automatic Control, 1991, 36(10): 1186–1188. · doi:10.1109/9.90232
[6] R. J. Benhabib, R. P. Iwens, R. L. Jackson. Adaptive control for large space structures. IEEE Conference on Decision and Control, New York: IEEE, 1979: 214–217.
[7] Y. Fujisaki, M. Ikeda, K. Miki. Robust stabilization of large space structures via displacement feedback. IEEE Transactions on Automatic Control, 2001, 46(12): 1993–1996. · Zbl 1011.93100 · doi:10.1109/9.975507
[8] S. M. Joshi. Control of Large Flexible Space Structures. Lecture notes in control and information sciences. Berlin: Springer, 1989.
[9] S. S. Ahmad, J. S. Lew, L. H. Keel. Fault tolerant controller design for large space structures. IEEE International Conference on Control Applications, New York: IEEE, 1999: 63–68.
[10] S. T. C. Huang, E. J. Davison, R. H. Kwong. Decentralized robust servomechanism problem for large flexible space structures under sensor and actuator failures. IEEE Transactions On Automatic Control, 2012, 57(12): 3219–3224. · Zbl 1369.93026 · doi:10.1109/TAC.2012.2200378
[11] G. S. West-Vukovich, E. J. Davison, P. C. Hughes. The decentralized control of large flexible space structures. IEEE Transactions on Automatic Control, 1984, 29(10): 866–879. · Zbl 0549.93005 · doi:10.1109/TAC.1984.1103392
[12] M. J. Balas. Trends in large space structure control theory: fondest hopes, wildest dreams. IEEE Transactions on Automatic Control, 1982, 27(3): 522–535. · Zbl 0496.93007 · doi:10.1109/TAC.1982.1102953
[13] H. B. Hablani. Generic model of a large flexible space structure for control concept evaluation. Journal of Guidance and Control, 1981, 4(5): 558–561. · doi:10.2514/3.56105
[14] E. J. Davison. The robust decentralized control of a general servomechanism problem. IEEE Transactions on Automatic Control, 1976, 21(1): 14–24. · Zbl 0326.93006 · doi:10.1109/TAC.1976.1101138
[15] E. J. Davison, B. Scherzinger. Perfect control of the robust servomechanism problem. IEEE Transactions on Automatic Control, 1987, 32(8): 689–702. · Zbl 0625.93051 · doi:10.1109/TAC.1987.1104691
[16] E. J. Davison, S. H. Wang. Properties and calculation of transmission zeros of linear multivariable systems. Automatica, 1974, 10(6): 643–658. · Zbl 0299.93018 · doi:10.1016/0005-1098(74)90085-5
[17] E. J. Davison, D. E. Davison, L. Simon. Multivariable three-term optimal controller design for large-scale systems. IEEE Conference on Decision and Control, New York: IEEE, 2009: 940–945.
[18] E. J. Davison. Multivariable tuning regulators: the feedforward and robust control of a general servomechanism problem. IEEE Transactions on Automatic Control, 1976, 21(1): 35–47. · Zbl 0326.93008 · doi:10.1109/TAC.1976.1101126
[19] L. Qiu, B. Bernhardsson, A. Rantzer, et al. A formula for computation of the real stability radius. Automatica, 1995, 31(6): 879–890. · Zbl 0839.93039 · doi:10.1016/0005-1098(95)00024-Q
[20] S. Lam, E. J. Davison. Computation of the real controllability radius and minimum-norm perturbations of high-order, descriptor, and time delay LTI systems. IEEE Transactions on Automatic Control, 2014, 59(8): 2189–2195. · Zbl 1360.93100 · doi:10.1109/TAC.2014.2298991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.