×

Maass-Jacobi Poincaré series and Mathieu moonshine. (English) Zbl 1327.11035

The main result here is a technical one: given an element \(g\in M_{24}\) there is an associated semi-holomorphic Maass-Jacobi form \(\phi_g\) of weight one and index two, which is characterised by its level, multiplier and principal parts at the cusps. The important part, though, is the construction of \(\phi_g\) and its relation to representations of \(M_{24}\).
The starting point is the observation of T. Eguchi et al. [Exp. Math. 20, No. 1, 91–96 (2011; Zbl 1266.58008)] that the coefficients of the unique Jacobi form of weight zero and index one, after some correction terms and factors, are simple linear combinations of the dimensions of irreducible representations of the Mathieu group \(M_{24}\). Attempts to explain this moonshine phenomenon have been partially successful and yield an \(M_{24}\) module \(K\) whose properties are encoded by weak Jacobi forms \(Z_{g}(\tau;z) \). However, no actual construction of this module is known. The authors propose an alternative in which the weak Jacobi forms are replaced by semi-holomorphic Maass-Jacobi forms, which are the analogues for Jacobi forms of Maass forms for modular forms.
This is a reformulation rather than a different version, because the \(\phi_g\) are modifications of mock modular forms \(H_g\) which in turn are mock modular forms associated with \(Z_g\) and thus already encode the information about the module \(K\). The advantage is that \(\phi_g\) can be identified with a Poincaré series that the authors construct: the characterisation theorem is used to show that the Poincaré series agrees with \(\phi_g\). The main technical difficulty in this part is showing that the Poincaré series converge and have a suitable analytic continuation. For this the authors use some formulae for certain Gauss sums, proved by them here, to reduce to a known case and thus avoid having to extend a substantial amount of theory (spectral theory, Kloosterman sums) from modular forms to Jacobi forms.

MSC:

11F50 Jacobi forms
11F20 Dedekind eta function, Dedekind sums
11F22 Relationship to Lie algebras and finite simple groups
11F37 Forms of half-integer weight; nonholomorphic modular forms
20C34 Representations of sporadic groups
20C35 Applications of group representations to physics and other areas of science

Citations:

Zbl 1266.58008

References:

[1] Aschbacher, M., The status of the classification of the finite simple groups, Notices Amer. Math. Soc., 51, 7, 736-740 (2004) · Zbl 1113.20302
[2] Aspinwall, P., \(K3\) surfaces and string duality, (Fields, Strings and Duality. Fields, Strings and Duality, Boulder, CO, 1996 (1997), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 421-540
[3] Barth, W.; Hulek, K.; Peters, C.; Van de Ven, A., Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4 (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1036.14016
[4] Berndt, B.; Evans, R.; Williams, K., Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts (1998), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0906.11001
[5] Beuville, A., Géométrie des surfaces \(K3\): modules et périodes, Astérisque, 126 (1985), Société Mathématique de France: Société Mathématique de France Paris, papers from the seminar held in Palaiseau, October 1981-January 1982 · Zbl 0547.00019
[6] Borcherds, R., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA, 83, 10, 3068-3071 (1986) · Zbl 0613.17012
[7] Bringmann, K.; Ono, K., The \(f(q)\) mock theta function conjecture and partition ranks, Invent. Math., 165, 2, 243-266 (2006) · Zbl 1135.11057
[8] Bringmann, K.; Raum, M.; Richter, O., Harmonic Maass-Jacobi forms with singularities and a theta-like decomposition, Trans. Amer. Math. Soc., 231, 2, 1100-1118 (2012) · Zbl 1334.11037
[9] Bringmann, K.; Richter, O., Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Adv. Math., 225, 2298-2315 (2010) · Zbl 1264.11039
[10] Bringmann, K.; Richter, O., Exact formulas for coefficients of Jacobi forms, Int. J. Number Theory, 7, 3, 825-833 (2011) · Zbl 1279.11050
[11] Bruinier, J.; Funke, J., On two geometric theta lifts, Duke Math. J., 125, 1, 45-90 (2004) · Zbl 1088.11030
[12] Cheng, M., \(K3\) surfaces, \(N = 4\) dyons and the Mathieu group \(M_{24}\), Commun. Number Theory Phys., 4, 4, 623-657 (2010) · Zbl 1231.14031
[13] Cheng, M.; Duncan, J., The largest Mathieu group and (mock) automorphic forms, (String-Math 2011. String-Math 2011, Proceedings of Symposia in Pure Mathematics, vol. 85 (2012)), 53-82
[14] Cheng, M.; Duncan, J., On Rademacher sums, the largest Mathieu group, and the holographic modularity of moonshine, Commun. Number Theory Phys., 6, 6, 697-758 (2012) · Zbl 1281.11040
[15] Cheng, M.; Duncan, J.; Harvey, J., Umbral moonshine, Commun. Number Theory Phys., 8, 2 (2014) · Zbl 1334.11029
[16] Cheng, M.; Duncan, J.; Harvey, J., Umbral moonshine and the Niemeier lattices, Res. Math. Sci., 1, 3 (2014) · Zbl 1365.11044
[17] Conway, J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups (1985), Clarendon Press: Clarendon Press Oxford, with comput. assist. from J.G. Thackray · Zbl 0568.20001
[18] Conway, J.; Norton, S., Monstrous moonshine, Bull. Lond. Math. Soc., 11, 3, 308-339 (1979) · Zbl 0424.20010
[19] Curtis, R., Natural constructions of the Mathieu groups, Math. Proc. Cambridge Philos. Soc., 106, 3, 423-429 (1989) · Zbl 0691.20003
[20] Dabholkar, A.; Murthy, S.; Zagier, D., Quantum Black Holes, Wall Crossing, and Mock Modular Forms, Cambridge Monographs in Mathematical Physics (2015), in press
[22] Duncan, J.; Frenkel, I., Rademacher sums, moonshine and gravity, Commun. Number Theory Phys., 5, 4, 1-128 (2011) · Zbl 1279.11045
[23] Eguchi, T.; Hikami, K., Superconformal algebras and mock theta functions, J. Phys. A, 42, 304010 (2009) · Zbl 1176.81100
[24] Eguchi, T.; Hikami, K., Superconformal algebras and mock theta functions 2. Rademacher expansion for K3 surface, Commun. Number Theory Phys., 3, 531-554 (2009) · Zbl 1189.81191
[25] Eguchi, T.; Hikami, K., Note on twisted elliptic genus of K3 surface, Phys. Lett. B, 694, 446-455 (2011)
[26] Eguchi, T.; Ooguri, H.; Tachikawa, Y., Notes on the K3 surface and the Mathieu group \(M_{24}\), Exp. Math., 20, 91-96 (2011) · Zbl 1266.58008
[27] Eguchi, T.; Ooguri, H.; Taormina, A.; Yang, S., Superconformal algebras and string compactification on manifolds with SU(N) holonomy, Nuclear Phys. B, 315, 193 (1989)
[28] Eguchi, T.; Taormina, A., Unitary representations of the \(N = 4\) superconformal algebra, Phys. Lett. B, 196, 1, 75-81 (1987)
[29] Eguchi, T.; Taormina, A., Character formulas for the \(N = 4\) superconformal algebra, Phys. Lett. B, 200, 3, 315-322 (1988)
[30] Eichler, M.; Zagier, D., The Theory of Jacobi Forms (1985), Birkhäuser: Birkhäuser Boston · Zbl 0554.10018
[31] Frenkel, I.; Lepowsky, J.; Meurman, A., A natural representation of the Fischer-Griess Monster with the modular function \(J\) as character, Proc. Natl. Acad. Sci. USA, 81, 10, 3256-3260 (1984) · Zbl 0543.20016
[32] Frenkel, I.; Lepowsky, J.; Meurman, A., A moonshine module for the Monster, (Vertex Operators in Mathematics and Physics. Vertex Operators in Mathematics and Physics, Berkeley, Calif., 1983. Vertex Operators in Mathematics and Physics. Vertex Operators in Mathematics and Physics, Berkeley, Calif., 1983, Mathematical Sciences Research Institute Publications, vol. 3 (1985), Springer-Verlag: Springer-Verlag New York), 231-273 · Zbl 0556.17008
[33] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134 (1988), Academic Press Inc.: Academic Press Inc. Boston, MA · Zbl 0674.17001
[34] Gaberdiel, M., An Introduction to conformal field theory, Rep. Progr. Phys., 63, 607-667 (2000)
[35] Gaberdiel, M.; Hohenegger, S.; Volpato, R., Mathieu Moonshine in the elliptic genus of K3, J. High Energy Phys., 1010, 062 (2010) · Zbl 1291.81312
[36] Gaberdiel, M.; Hohenegger, S.; Volpato, R., Mathieu twining characters for K3, J. High Energy Phys., 1009, 058 (2010) · Zbl 1291.81311
[38] Goldfeld, D.; Sarnak, P., Sums of Kloosterman sums, Invent. Math., 71, 2, 243-250 (1983) · Zbl 0507.10029
[40] (Landweber, P. S., Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings of a Conference Held at the Institute for Advanced Study Princeton. Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings of a Conference Held at the Institute for Advanced Study Princeton, Lecture Notes in Mathematics, vol. 1326 (1988), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0642.00007
[41] Li, W.; Song, W.; Strominger, A., Chiral gravity in three dimensions, J. High Energy Phys., 4, 082 (2008) · Zbl 1246.83158
[42] Maloney, A.; Witten, E., Quantum gravity partition functions in three dimensions, J. High Energy Phys., 2, 029 (2010) · Zbl 1270.83022
[43] Manschot, J., \(AdS_3\) partition functions reconstructed, J. High Energy Phys., 10, 7, 103 (2007)
[44] Manschot, J.; Moore, G., A modern fareytail, Commun. Number Theory Phys., 4, 103-159 (2010) · Zbl 1259.58005
[45] Mathieu, É., Mémoire sur l’étude des fonctions de plusiers quantités, sur la manière de les former et sur les substitutions qui les laissent invariables, J. Math. Pures Appl., 6, 241-323 (1861)
[46] Mathieu, É., Sur la fonction cinq fois transitive de 24 quantités, J. Math. Pures Appl., 18, 25-46 (1873) · JFM 05.0088.01
[48] Mukai, S., Finite groups of automorphisms of \(K3\) surfaces and the Mathieu group, Invent. Math., 94, 1, 183-221 (1988) · Zbl 0705.14045
[49] Ochanine, S., Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology, 26, 2, 143-151 (1987) · Zbl 0626.57014
[50] Ochanine, S., What is… an elliptic genus, Notices Amer. Math. Soc., 56, 6, 720-721 (2009) · Zbl 1172.58006
[51] Ogg, A., Automorphismes de courbes modulaires, (Séminaire Delange-PisotPoitou (16e année: 1974/75), Théorie des nombres, Fasc. 1, Exp. No. 7 (1975), Secrétariat Mathématique: Secrétariat Mathématique Paris), 8 · Zbl 0336.14006
[52] Ono, K., Unearthing the visions of a master: harmonic Maass forms and number theory, (Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference (2009), International Press: International Press Somerville, MA), 347-454 · Zbl 1229.11074
[53] Pribitkin, W., The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight II, Acta Arith., 93, 4, 343-358 (2000) · Zbl 1161.11336
[54] Rademacher, H., The Fourier series and the functional equation of the absolute modular invariant J \((τ)\), Amer. J. Math., 61, 1, 237-248 (1939) · JFM 65.0351.02
[55] Rademacher, H., On the transformation of \(\log \eta(\tau)\), J. Indian Math. Soc., 19, 25-30 (1955) · Zbl 0064.32703
[56] Rademacher, H., Topics in analytic number theory, (Grosswald, E.; Lehner, J.; Newman, M., Grundlehren der Mathematischen Wissenschaften, vol. 169 (1973), Springer-Verlag: Springer-Verlag New York, Heidelberg) · Zbl 0253.10002
[57] Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II, Math. Ann., 168, 261-324 (1966) · Zbl 0152.07705
[58] Sarnak, P., Additive number theory and Maass forms, (Number Theory. Number Theory, New York, 1982. Number Theory. Number Theory, New York, 1982, Lecture Notes in Mathematics, vol. 1052 (1984), Springer-Verlag: Springer-Verlag Berlin), 286-309 · Zbl 0534.10021
[59] Selberg, A., On the estimation of Fourier coefficients of modular forms, (Proceedings of Symposia in Pure Mathematics, vol. VIII (1965), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-15 · Zbl 0142.33903
[60] Skoruppa, N., Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms, Invent. Math., 102, 3, 501-520 (1990) · Zbl 0715.11024
[61] Smith, S., On the head characters of the Monster simple group, (Finite Groups—Coming of Age. Finite Groups—Coming of Age, Montreal, Que., 1982. Finite Groups—Coming of Age. Finite Groups—Coming of Age, Montreal, Que., 1982, Contemporary Mathematics, vol. 45 (1985), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 303-313 · Zbl 0591.20023
[62] Thompson, J., Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. Lond. Math. Soc., 11, 3, 352-353 (1979) · Zbl 0425.20016
[64] Zagier, D., Ramanujan’s mock theta functions and their applications (d’après Zwegers and Ono-Bringmann), Séminaire Bourbaki, 60ème année, 2007-2008, no. 986. Séminaire Bourbaki, 60ème année, 2007-2008, no. 986, Astérisque, 326, 143-164 (2009), Soc. Math. de France · Zbl 1198.11046
[65] Zwegers, S., Mock Theta functions (2002), Utrecht University, PhD thesis · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.