×

On the Weil-Petersson convex geometry of Teichmüller space. (English. Japanese original) Zbl 1393.30035

Sugaku Expo. 30, No. 2, 159-186 (2017); translation from Sūgaku 65, No. 2, 174-198 (2013).
Summary: The family of conformal structures that can be realized on a given topological surface constitute the Teichmüller space of the surface. It is known to be simply connected and finite dimensional when the surface is of finite type. We will equip the Teichmüller space with a particular Riemannian metric, the Weil-Petersson metric, and investigate the convex geometry induced from the resulting distance function. In particular, we illustrate that the Weil-Petersson geometry offers a synthetic view of the so-called augmented Teichmüller space, through the theory of the CAT(0) space. Additionally, we will consider the Weil-Petersson metric defined on the universal Teichmüller space, where each finite-dimensional Teichmüller space is isometrically embedded. In conclusion, we formulate a question concerning the synthetic Weil-Petersson geometry of the universal Teichmüller space.

MSC:

30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30-03 History of functions of a complex variable
32-03 History of several complex variables and analytic spaces
01A60 History of mathematics in the 20th century
Full Text: DOI

References:

[1] Ab W. Abikoff, Degenerating families of Riemann surfaces, Ann. of Math.(2) 105 (1977) 29-44. · Zbl 0347.32010
[2] AB A. Beurling and L. Ahlfors, The boundary correspondence under quasi-conformal mappings, Acta Math. 96 (1956), 125-142. · Zbl 0072.29602
[3] Ah1 L. Ahlfors, Some remarks on Teichm\`“uller”s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171-191. · Zbl 0146.30602
[4] Al S. Al’ber, Spaces of mappings into a manifold with negative curvature, Soviet Math. Dokl. 9 (1968), 6-9. · Zbl 0165.55704
[5] BPT A. Belkhirat, A. Papadopoulos and M. Troyanov, Thurston’s weak metric on the Teichm\"uller space of the torus, Trans. Amer. Math. Soc. 357 (2005), 3311-3324. · Zbl 1088.30047
[6] Ber L. Bers, Spaces of degenerating Riemann surfaces. In Discontinuous groups and Riemann surfaces, Ann. of Math. Studies 79 (1974), Princeton University Press, Princeton, NJ. · Zbl 0294.32016
[7] Bo N. Bourbaki, Groupes et Alg\'ebres de Lie, Hermann, Paris, 1981. · Zbl 0483.22001
[8] BH M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer, Berlin, 1999. · Zbl 0988.53001
[9] BMW K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic, Ann. of Math. 175 (2012), 835-908. · Zbl 1254.37005
[10] Ch T. Chu, The Weil-Petersson metric on the moduli space, Chinese J. Math. 4 (1976), 29-51. · Zbl 0344.32006
[11] Da M. Davis, The Geometry and Topology of Coxeter Groups, Princeton Univ. Press, Princeton, NJ, 2007.
[12] DW G. Daskalopoulos and R. Wentworth, Classification of Weil-Petersson isometries, Amer. J. Math. 125 (2003), 941-975. · Zbl 1043.32007
[13] EE C. Earle and J. Eells, A fiber bundle description of Teichm\"uller theory, J. Differential Geom. 3 (1969), 19-43. · Zbl 0185.32901
[14] EL J. Eells and L. Lemaire, Deformations of metrics and associated harmonic maps, Patodi Memorial Volume, Geometry and Analysis, Tata Inst. Bombay (1980), 33-45.
[15] EL2 J. Eells and L. Lemaire, Two reports on harmonic maps, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. · Zbl 0836.58012
[16] ES J. Eells and J. Sampson, Harmonic Mappings of Riemannian Manifolds, Amer. J. of Math. 86 (1964), 109-160. · Zbl 0122.40102
[17] FM A. Fischer and J. Marsden, Deformations of the scalar curvature, Duke Math. J. 42 (1975), 519-547. · Zbl 0336.53032
[18] FT1 A. Fischer and A. Tromba, On the Weil-Petersson metric on the Teichm\"uller space, Trans. A.M.S. 284 (1984), 319-335. · Zbl 0578.58006
[19] FT2 A. Fischer and A. Tromba, On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann. 267 (1984), 311-345. · Zbl 0518.32015
[20] F P. Funk, \`“Uber geometrien, bei denen die geraden die k\'”urzesten sind, Math. Ann. 101 (1929), 226-237. · JFM 55.1043.01
[21] GS M. Gromov and R. Schoen, Harmonic mappings into singular spaces and p-adic super-rigidity for lattices in groups of rank one, Publ. IHES 76 (1992), 165-246. · Zbl 0896.58024
[22] Ha P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673-687. · Zbl 0148.42404
[23] IT Imayoshi and Taniguchi, An Introduction to Teichm\"uller Spaces, Springer-Verlag, Tokyo 1992. · Zbl 0754.30001
[24] Jo J. Jost, Two-dimensional geometric variational problems, Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1991. · Zbl 0729.49001
[25] JS J. Jost and R. Schoen, On the existence of harmonic diffeomorphisms, Invent. Math. 66 (1982), 353-359. · Zbl 0488.58009
[26] Ke S. Kerckhoff, The asymptotic geometry of Teichm\"uller space, Topology 19 (1980), 23-41. · Zbl 0439.30012
[27] Ko N. Koiso, Variation of harmonic mapping caused by a deformation of Riemannian metric, Hokkaido Math. J. 8 (1979), 199-213. · Zbl 0433.58012
[28] KS3 N. Korevaar and R. Schoen, Global existence theorems for harmonic maps: finite rank spaces and an approach to rigidity for smooth actions, Preprint (1997).
[29] Le O. Lehto, Univalent functions and Teichm\"uller spaces, Graduate Texts in Mathematics 109, Springer-Verlag, New York, 1987. · Zbl 0606.30001
[30] Ma H. Masur, The extension of the Weil-Petersson metric to the boundary of Teichm\"uller space, Duke Math. 43 (1976), 623-635. · Zbl 0358.32017
[31] Mir M. Mirzahkani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. 20 (2007), 1-23. · Zbl 1120.32008
[32] Mo C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. A.M.S. 43 (1938), 126-166. · Zbl 0018.40501
[33] Na S. Nag, The complex analytic theory of Teichm\"uller spaces, John Wiley & Sons Inc., New York, 1988. · Zbl 0667.30040
[34] NV S. Nag and A. Verjovsky, \(Diff (S^1)\) and the Teichm\"uller spaces, Comm. Math. Phys. 130 (1990), 123-138. · Zbl 0705.32013
[35] OW K. Obitsu and S. Wolpert, Grafting hyperbolic metrics and Eisenstein series, Math. Ann. 341 (2008), 685-706. · Zbl 1146.30028
[36] PT1 A. Papadopoulos and M. Troyanov, Weak Finsler structures and the Funk weak metric, Math. Proc. Cambridge Philos. Soc. 147, 419-437, (2009). · Zbl 1198.53084
[37] Re Y. Re\v shetnyak, On the theory of spaces of curvature no greater than \(K\), Mat. Sb. 52 (1960), 789-798.
[38] Ri G. Riera, A formula for the Weil-Petersson product of quadratic differentials, J. Anal. Math. 95 (2005), 105-120. · Zbl 1085.30041
[39] ST G. Shephard and J. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304. · Zbl 0055.14305
[40] Te O. Teichm\`“uller, Extremal quasiconformal mappings and quadratic differentials [translation of MR0003242]. Translated from the German by Guillaume Th\'”eret. IRMA Lect. Math. Theor. Phys., 26, Handbook of Teichm\`“uller theory. Vol. V, 321-483, Eur. Math. Soc., Z\'”urich, 2016. · Zbl 1344.30044
[41] Th1 W. Thurston, Minimal stretch maps between hyperbolic surfaces. Preprint, available at arxiv:math GT/9801039 (1986).
[42] Th W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S. 19 (1988), 417-431. · Zbl 0674.57008
[43] Tr1A. Tromba, Teichm\`“uller Theory in Riemannian Geometry, Birkh\'”auser, 1992. · Zbl 0785.53001
[44] TT L. Takhtajan and L.-P. Teo, Weil-Petersson Metric on the Universal Teichmuller Space, Mem. Amer. Math. Soc. 183 (2006). · Zbl 1243.32010
[45] TZ L. Takhtajan and P. Zograf, The Selberg zeta function and a new K\"ahler metric on the moduli space of punctured Riemann surfaces, J. Geom. Phys. 5 (1989), 551-570. · Zbl 0739.30032
[46] We1 A. Weil, Modules des surfaces de Riemann, S\'eminaire N. Bourbaki, exp. no 168 (1958), 413-419. · Zbl 0084.28102
[47] We2 A. Weil, On the moduli of Reimann surfaces (to Emil Artin), Final Report on contract AF 18(603), included in Andr\'e Weil Collected Papers 1951-1964, Vol. 2, 1979, Springer.
[48] W0 S. Wolpert, Noncompleteness of the Weil-Petersson metric for Teichm\"uller space, Pacific J. Math. 61 (1975), 573-577. · Zbl 0327.32009
[49] W4 S. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), 119-145. · Zbl 0595.32031
[50] W1 S. Wolpert, Geodesic length functions and the Nielsen problem, J. Diff. Geom. 25 (1987), 275-296. · Zbl 0616.53039
[51] W2 S. Wolpert, Geometry of the Weil-Petersson completion of Teichm\"uller space. In Surveys in Differential Geometry VIII: Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck, Intl. Press, Somerville, MA, 2003. · Zbl 1049.32020
[52] W3 S. Wolpert, Behavior of geodesic-length functions on Teichm\"uller space, J. Diff. Geom. 79 (2008), 277-334. · Zbl 1147.30032
[53] Wobook S. Wolpert, Families of Riemann surfaces and Weil-Petersson Geometry, CBMS Regional Conference Series in Mathematics, 113, American Mathematical Society, Providence, RI, 2010. · Zbl 1198.30049
[54] Y1 S. Yamada, Weil-Petersson convexity of the energy functional on classical and universal Teichm\"uller spaces, J. Diff. Geom. 51 (1999), 35-96. · Zbl 1035.32009
[55] Y5 S. Yamada, Weil-Petersson Completion of Teichmueller Spaces and Mapping Class Group Actions. Preprint arXiv:math/0112001v1 (2001).
[56] Y2 S. Yamada, On the geometry of Weil-Petersson completion of Teichm\"uller spaces, Math. Res. Let. 11 (2004), 327-344. · Zbl 1060.32005
[57] Y3 S. Yamada, Weil-Petersson geometry of Teichm\"uller-Coxeter complex and its finite rank property, Geom. Dedicata 145 (2010), 43-63. · Zbl 1189.32008
[58] Y6 S. Yamada, Some Aspects of Weil-Petersson Geometry of Teichm\"uller Spaces, Surveys in Geometric Analysis and Relativity, Advanced Lectures in Mathematics 20 (2011), 531-546. · Zbl 1255.32007
[59] Y7 S. Yamada, Local and global aspects of Weil-Petersson geometry, appearing as a chapter in Handbook of Teichm\`“uller theory, Vol. IV, 43-111, IRMA Lect. Math. Theor. Phys., 19, Eur. Math. Soc., Z\'”urich, 2014. · Zbl 1312.30057
[60] Y4 S. Yamada, Convex Bodies in Euclidean and Weil-Petersson geometries, Proc. Amer. Math. Soc. 142 (2014), no. 2, 603-616. · Zbl 1288.30045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.