×

Hyperbolic string vertices. (English) Zbl 1522.81670

Summary: The string vertices of closed string field theory are subsets of the moduli spaces of punctured Riemann surfaces that satisfy a geometric version of the Batalin-Vilkovisky master equation. We present a homological proof of existence of string vertices and their uniqueness up to canonical transformations. Using hyperbolic metrics on surfaces with geodesic boundaries we give an exact construction of string vertices as sets of surfaces with systole greater than or equal to \(L\) with \(L\leq 2\operatorname{arcsinh}1\). Intrinsic hyperbolic collars prevent the appearance of short geodesics upon sewing. The surfaces generated by Feynman diagrams are naturally endowed with Thurston metrics: hyperbolic on the vertices and flat on the propagators. For the classical theory the length \(L\) is arbitrary and, as \(L\rightarrow\infty\) hyperbolic vertices become the minimal-area vertices of closed string theory.

MSC:

81T70 Quantization in field theory; cohomological methods
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Zwiebach, B., Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B, 390, 33 (1993) · doi:10.1016/0550-3213(93)90388-6
[2] Sen, A., BV Master Action for Heterotic and Type II String Field Theories, JHEP, 02, 087 (2016) · doi:10.1007/JHEP02(2016)087
[3] de Lacroix, C.; Erbin, H.; Kashyap, SP; Sen, A.; Verma, M., Closed Superstring Field Theory and its Applications, Int. J. Mod. Phys. A, 32, 1730021 (2017) · Zbl 1376.81065 · doi:10.1142/S0217751X17300216
[4] Sen, A.; Zwiebach, B., Background independent algebraic structures in closed string field theory, Commun. Math. Phys., 177, 305 (1996) · Zbl 0848.17037 · doi:10.1007/BF02101895
[5] Sen, A.; Zwiebach, B., Quantum background independence of closed string field theory, Nucl. Phys. B, 423, 580 (1994) · Zbl 0990.81644 · doi:10.1016/0550-3213(94)90145-7
[6] Sonoda, H.; Zwiebach, B., Closed String Field Theory Loops With Symmetric Factorizable Quadratic Differentials, Nucl. Phys. B, 331, 592 (1990) · doi:10.1016/0550-3213(90)90086-S
[7] K.J. Costello, The Gromov-Witten potential associated to a TCFT, math/0509264 [INSPIRE].
[8] Hata, H.; Zwiebach, B., Developing the covariant Batalin-Vilkovisky approach to string theory, Annals Phys., 229, 177 (1994) · Zbl 0784.53054 · doi:10.1006/aphy.1994.1006
[9] Zwiebach, B., How covariant closed string theory solves a minimal area problem, Commun. Math. Phys., 136, 83 (1991) · Zbl 0725.30032 · doi:10.1007/BF02096792
[10] Headrick, M.; Zwiebach, B., Convex programs for minimal-area problems, Commun. Math. Phys., 377, 2217 (2020) · Zbl 1443.30015 · doi:10.1007/s00220-020-03732-1
[11] Headrick, M.; Zwiebach, B., Minimal-area metrics on the Swiss cross and punctured torus, Commun. Math. Phys., 377, 2287 (2020) · Zbl 1514.90185 · doi:10.1007/s00220-020-03734-z
[12] U. Naseer and B. Zwiebach, Extremal isosystolic metrics with multiple bands of crossing geodesics, arXiv:1903.11755 [INSPIRE].
[13] S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part I. The string vertices via hyperbolic Riemann surfaces, JHEP08 (2019) 157 [arXiv:1706.07366] [INSPIRE]. · Zbl 1421.83122
[14] S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part II. The rules for evaluating the quantum BV master action, JHEP08 (2019) 177 [arXiv:1708.04977] [INSPIRE]. · Zbl 1421.83123
[15] McShane, G., Simple geodesics and a series constant over Teichmüller space, Invent. Math., 132, 607 (1998) · Zbl 0916.30039 · doi:10.1007/s002220050235
[16] Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 179 (2006) · Zbl 1125.30039 · doi:10.1007/s00222-006-0013-2
[17] Mirzakhani, M., Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Am. Math. Soc., 20, 1 (2007) · Zbl 1120.32008 · doi:10.1090/S0894-0347-06-00526-1
[18] Dijkgraaf, R.; Witten, E., Developments in Topological Gravity, Int. J. Mod. Phys. A, 33, 1830029 (2018) · Zbl 1404.83001 · doi:10.1142/S0217751X18300296
[19] Wolpert, SA, The hyperbolic metric and the geometry of the universal curve, J. Diff. Geom., 31, 417 (1990) · Zbl 0698.53002
[20] K. Obitsu and S.A. Wolpert, Grafting hyperbolic metrics and Eisenstein series, Math. Ann.341 (2008) 685 [MR2399166] [arXiv:0704.3169]. · Zbl 1146.30028
[21] K. Costello, The Green-Schwarz mechanism and higher-loop anomaly cancellation in topological string field theory, in proceedings of the Simons Center Workshop on String field theory, BV quantization and moduli spaces, Stony Brook, NY, U.S.A., 20-24 May 2019.
[22] P. Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser Boston MA U.S.A. (1992). · Zbl 0770.53001
[23] Mondello, G., Riemann surfaces with boundary and natural triangulations of the Teichmüller space, J. Eur. Math. Soc., 13, 635 (2011) · Zbl 1215.30015 · doi:10.4171/JEMS/263
[24] S.F. Moosavian and Y. Zhou, On the existence and uniqueness of closed-superstring field theory vertices, to appear.
[25] Dumas, D.; Wolf, M., Projective structures, grafting and measured laminations, Geom. Topol., 12, 351 (2008) · Zbl 1147.30030 · doi:10.2140/gt.2008.12.351
[26] J.E. Andersen, Geometric Recursion with a View Towards Resurgence, talk at Resurgence in Mathematics and Physics, IHES, Le Bois-Marie, Bures-sur-Yvette, France, 11-14 June 2019.
[27] Mumford, D., A remark on Mahler’s compactness theorem, Proc. Amer. Math. Soc., 28, 289 (1971) · Zbl 0215.23202
[28] Jenni, F., Ueber den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv., 59, 193 (1984) · Zbl 0541.30034 · doi:10.1007/BF02566345
[29] H. Parlier, Simple closed geodesics and the study of Teichmüller spaces, in Handbook of Teichmüller theory. Volume IV, IRMA Lectures in Mathematics and Theoretical Physics19, European Mathematical Society, Zurich Switzerland (2014), pp. 113-134 [arXiv:0912.1540]. · Zbl 1314.30081
[30] J.H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Matrix Editions (2006). · Zbl 1102.30001
[31] L. Keen, On fundamental domains and the Teichmüller modular group, in Contributions to Analysis, a collection of papers dedicated to Lipman Bers, I.V. Ahlfors et al. eds., Academic Press (1974), pp. 185-194. · Zbl 0305.32010
[32] D. Dumas, Complex projective structures, in Handbook of Teichmüller Theory. Volume II, A. Papadopoulos ed., IRMA Lectures in Mathematics and Theoretical Physics13, European Mathematical Society, Zurich Switzerland (2009), pp. 455-508. · Zbl 1196.30039
[33] K.P. Scannell and M. Wolf, The grafting map of Teichmüller space, J. Am. Math. Soc.15 (2002) 893 [math/9810082]. · Zbl 1011.32009
[34] H. Tanigawa, Grafting, harmonic maps and projective structures on surfaces, J. Diff. Geom.47 (1997) 399 [math/9508216]. · Zbl 0955.32012
[35] McMullen, CT, Complex earthquakes and Teichmüller theory, J. Am. Math. Soc., 11, 283 (1998) · Zbl 0890.30031 · doi:10.1090/S0894-0347-98-00259-8
[36] Kugo, T.; Kunitomo, H.; Suehiro, K., Nonpolynomial Closed String Field Theory, Phys. Lett. B, 226, 48 (1989) · doi:10.1016/0370-2693(89)90287-6
[37] Saadi, M.; Zwiebach, B., Closed String Field Theory from Polyhedra, Annals Phys., 192, 213 (1989) · doi:10.1016/0003-4916(89)90126-7
[38] M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: Foundations, Nucl. Phys. B505 (1997) 569 [hep-th/9705038] [INSPIRE]. · Zbl 0911.53044
[39] J.E. Andersen et al., Topological recursion for Masur-Veech volumes, arXiv:1905.10352 [INSPIRE].
[40] J.E. Andersen, G. Borot and N. Orantin, Geometric Recursion, arXiv:1711.04729. · Zbl 1448.81439
[41] Crane, L.; Rabin, JM, SuperRiemann Surfaces: Uniformization and Teichmüller Theory, Commun. Math. Phys., 113, 601 (1988) · Zbl 0659.30039 · doi:10.1007/BF01223239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.