×

Enhancing rheumatic fever analysis via tritopological approximation spaces for data reduction. (English) Zbl 07894871

Summary: This paper introduces the concept of tritopological approximation space, extending conventional approximation space by drawing upon topological spaces and precisely defined binary relations within a universe of discourse. Through meticulous construction of subbases, this progressive paradigm shift facilitates a comprehensive analysis of rough sets within the domain of tritopological approximation spaces. Additionally, the study pioneer’s multiple membership functions and inclusion functions, enhancing the analytical framework and enabling more effective redefinition of rough approximations. To illustrate the practical advantages, real-life application examples are presented, focusing on the implementation of data reduction methods within the context of rheumatic fever – a prevalent disease characterized by diverse symptoms among patients, despite a consistent diagnosis. This research contributes to the advancement of rough set theory and its applications in addressing complex, real-world problems.

MSC:

68-XX Computer science
41-XX Approximations and expansions
Full Text: DOI

References:

[1] If T ri T (A) = T ri T (A) (i.e. T ri T BON (A) = ∅), then A is called tri-definable set.
[2] If T ri T j (A) = T ri T j (A) (i.e. T ri T BON j (A) = ∅), then A is called tri-j-definable set.
[3] If T ri T (A) ̸ = T ri T (A) (i.e. T ri T BON (A) ̸ = ∅), then A is called tri-rough set.
[4] If T ri T j (A) ̸ = T ri T j (A) (i.e. T ri T BON j (A) ̸ = ∅), then A is called tri-j-rough set. Definition 4.2. In the context of the tritopological approximation space denoted as (U, R,τ r , τ ℓ , τ rℓ ), where A ⊆ U : 1. A set A is termed roughly tri-definable if both T ri T (A) ̸ = ∅ and T ri T (A) ̸ = U .
[5] A set A is labeled roughly tri-j-definable if both T ri T j (A) ̸ = ∅ and T ri T j (A) ̸ = U .
[6] A set A is termed internally tri-undefinable if both T ri T (A) = ∅ and T ri T (A) ̸ = U .
[7] A set A is referred to as internally tri-j-undefinable if both T ri T j (A) = ∅ and T ri T j (A) ̸ = U .
[8] A set A is termed externally tri-undefinable if both T ri T (A) ̸ = ∅ and T ri T (A) = U .
[9] A set A is referred to as externally tri-j-undefinable if both T ri T j (A) ̸ = ∅ and T ri T j (A) = U .
[10] A set A is termed totally tri-undefinable if both T ri T (A) = ∅ and T ri T (A) = U .
[11] A set A is referred to as totally tri-j-undefinable if both T ri T j (A) = ∅ and T ri T j (A) = U . Remark 4.1. For any tritopological approximation space (U, R, τ r , τ ℓ , τ rℓ ). The following hold: 1. Tri -δβRD(U ) ⊇ Tri -βRD(U ) ⊇ Tri -RD(U ).
[12] Tri -δβIU D(U ) ⊆ Tri -βIU D(U ) ⊆ Tri -IU D(U ).
[13] Tri -δβEU D(U ) ⊆ Tri -βEU D(U ) ⊆ Tri -EU D(U ).
[14] Proposition 4.1. For any tritopological approximation space (U, R, τ r , τ ℓ , τ rℓ ) and for all x, y ∈ U , we have: 1. If x ∈ T ri T ({y}) and y ∈ T ri T ({x}) , then T ri T ({x}) = T ri T ({y}).
[15] If x ∈ T ri T j ({y}) and y ∈ T ri T j ({x}) , then T ri T j ({x}) = T ri T j ({y}).
[16] Since Tri -cl({y}) is a Tri -closed set containing x while Tri -cl({x}) is the smallest Tri -closed set containing x, thus Tri -cl({x}) ⊆ Tri -cl({y}). Hence, T ri T ({x}) ⊆ T ri T ({y}). The opposite inclusion follows by symmetry Tri -cl({y}) ⊆ Tri -cl({x}). Therefore, T ri T ({y}) ⊆ T ri T ({x}).
[17] M. E. Abd El-Monsef, M. A. El-Gayar & R. M. Aqeel (2014). On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces. International Journal of Granular Computing, Rough Sets and Intelligent Systems, 3(4), 257-271. https://doi.org/10. 1504/IJGCRSIS.2014.068022. · doi:10.1504/IJGCRSIS.2014.068022
[18] M. E. Abd El-Monsef, M. A. El-Gayar & R. M. Aqeel (2017). A comparison of three types of rough fuzzy sets based on two universal sets. International Journal of Machine Learning and Cybernetics, 8, 343-353. https://doi.org/10.1007/s13042-015-0327-8. · doi:10.1007/s13042-015-0327-8
[19] E. A. Abo-Tabl (2013). Rough sets and topological spaces based on similarity. Inter-national Journal of Machine Learning and Cybernetics, 4, 451-458. https://doi.org/10.1007/ s13042-012-0107-7. · doi:10.1007/s13042-012-0107-7
[20] H. M. Abu-Donia, A. A. Nasef & E. A. Marai (2007). Finite information systems. Applied Mathematics & Information Sciences, 1(1), 13-21. · Zbl 1138.94335
[21] F. Adam & N. Hassan (2017). Group decision making methods based on multi q-fuzzy soft interval set. Malaysian Journal of Mathematical Sciences, 11(1), 53-69. · Zbl 1527.03018
[22] M. I. Ali, M. K. El-Bably & E. A. Abo-Tabl (2022). Topological approach to generalized soft rough sets via near concepts. Soft Computing, 26, 499-509. https://doi.org/10.1007/ s00500-021-06456-z. · doi:10.1007/s00500-021-06456-z
[23] M. Atef, S. Nada & A. S. Nawar (2023). Covering soft rough sets and its topological properties with application. Soft Computing, 27(8), 4451-4461. https://doi.org/10.1007/ s00500-023-07812-x. · doi:10.1007/s00500-023-07812-x
[24] M. K. El-Bably, M. I. Ali & E. A. Abo-Tabl (2021). New topological approaches to generalized soft rough approximations with medical applications. Journal of Mathematics, 2021, 1-16. https://doi.org/10.1155/2021/2559495. · doi:10.1155/2021/2559495
[25] M. K. El-Bably & M. El-Sayed (2022). Three methods to generalize pawlak approximations via simply open concepts with economic applications. Soft Computing, 26(10), 4685-4700.
[26] M. A. El-Gayar & A. A. El-Atik (2022). Topological models of rough sets and decision making of COVID-19. Complexity, 2022, 1-10. https://doi.org/10.1155/2022/2989236. · doi:10.1155/2022/2989236
[27] X. Ge, X. Bai & Z. Yun (2012). Topological characterizations of covering for special covering-based upper approximation operators. Information Sciences, 204, 70-81. https://doi.org/10. 1016/j.ins.2012.04.005. · Zbl 1250.68258 · doi:10.1016/j.ins.2012.04.005
[28] N. F. Hameed & M. Y. Abid (2011). Certain types of separation axioms in tri-topological spaces. Iraqi Journal of Science, 52(2), 212-217.
[29] J. L. Kelley (1955). General topology. D. Van Nastrand Company Inc., Princeton, NewJersey. · Zbl 0066.16604
[30] M. M. Kovar (2000). On 3-topological version of θ-regularity. International Journal of Mathe-matics and Mathematical Sciences, 23, 393-398. https://doi.org/10.1155/S0161171200001678. · Zbl 0991.54037 · doi:10.1155/S0161171200001678
[31] A. M. Kozae, M. E. Abd El-Monsef & S. Abd El-Badie (2006). New approaches for data reduction in generalized multi-valued decision information system: Case study of rheumatic fever patients. Egyptian Rough Sets Working Group, pp. 1-15.
[32] J. Li (2004). Topological methods on the theory of covering generalized rough sets. Pattern Recognition and Artificial Intelligence, 17(1), 7-10.
[33] H. Lu, A. M. Khalil, W. Alharbi & M. El-Gayar (2021). A new type of generalized picture fuzzy soft set and its application in decision making. Journal of Intelligent & Fuzzy Systems, 40(6), 12459-12475. https://doi.org/10.3233/JIFS-201706. · doi:10.3233/JIFS-201706
[34] W. W. Mohd, L. Abdullah, B. Yusoff, C. Taib & J. Merigo (2019). An integrated MCDM model based on pythagorean fuzzy sets for green supplier development program. Malaysian Journal of Mathematical Sciences, 13, 23-37.
[35] M. Novotny & Z. Pawlak (1985). Characterization of rough top equalities and rough bottom equalities. Bulletin of the Polish Academy of Sciences. Mathematics, 33(1-2), 91-97. · Zbl 0569.68083
[36] S. Palaniammal (2011). A study of tri topological spaces. PhD thesis, Manonmaniam Sundara-nar University.
[37] Z. Pawlak (1982). Rough sets. International Journal of Computer & Information Sciences, 11, 341-356. · Zbl 0501.68053
[38] Z. Pawlak (2012). Rough sets: Theoretical aspects of reasoning about data volume 9. Springer Science & Business Media, New York. https://doi.org/10.1007/978-94-011-3534-4. · doi:10.1007/978-94-011-3534-4
[39] P. Priyadharshini & A. Parvathi (2017). Tri-b-continuous function in tri topological spaces. International Journal of Mathematics and its Applications, 5(4f), 959-962.
[40] M. Shah, A. Wahab & M. Zulkifly (2019). Fuzzy cubic bézier curve approximation in fuzzy topological digital space. Malaysian Journal of Mathematical Sciences, 13, 123-137. · Zbl 1455.65035
[41] S. Shalil, S. El-Sheikh & S. Kandil (2023). An application on an information system via nano ordered topology. Malaysian Journal of Mathematical Sciences, 17(4), 509-529. https://doi.org/ 10.47836/mjms.17.4.01. · Zbl 1539.68348 · doi:10.47836/mjms.17.4.01
[42] U. Tapi, R. Sharma & B. A. Deole (2016). Semi-open sets and pre open sets in tri topological space. i-Manager’s Journal on Mathematics, 5(3), 41-48. https://doi.org/10.26634/jmat.5.3. 8227. · doi:10.26634/jmat.5.3.8227
[43] Z. Tarmudi, A. O. M. Tap & M. L. Abdullah (2012). Equilibrium linguistic computation method for fuzzy group decision-making. Malaysian Journal of Mathematical Sciences, 6(2), 225-242.
[44] B. Tripathy & M. Nagaraju (2012). On some topological properties of pessimistic multi-granular rough sets. International Journal of Intelligent Systems and Applications, 4(8), 10-17. https://doi.org/10.5815/ijisa.2012.08.02. · doi:10.5815/ijisa.2012.08.02
[45] A. Wiweger (1989). On topological rough sets. Bulletin of the Polish Academy of Sciences. Mathematics, 37(1-6), 89-93. · Zbl 0755.04010
[46] Y. Y. Yao (1998). Relational interpretations of neighborhood operators and rough set ap-proximation operators. Information sciences, 111(1-4), 239-259. https://doi.org/10.1016/ S0020-0255(98)10006-3. · Zbl 0949.68144 · doi:10.1016/S0020-0255(98)10006-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.