×

Networks beyond pairwise interactions: structure and dynamics. (English) Zbl 1472.05143

Summary: The complexity of many biological, social and technological systems stems from the richness of the interactions among their units. Over the past decades, a variety of complex systems has been successfully described as networks whose interacting pairs of nodes are connected by links. Yet, from human communications to chemical reactions and ecological systems, interactions can often occur in groups of three or more nodes and cannot be described simply in terms of dyads. Until recently little attention has been devoted to the higher-order architecture of real complex systems. However, a mounting body of evidence is showing that taking the higher-order structure of these systems into account can enhance our modeling capacities and help us understand and predict their dynamical behavior. Here we present a complete overview of the emerging field of networks beyond pairwise interactions. We discuss how to represent higher-order interactions and introduce the different frameworks used to describe higher-order systems, highlighting the links between the existing concepts and representations. We review the measures designed to characterize the structure of these systems and the models proposed to generate synthetic structures, such as random and growing bipartite graphs, hypergraphs and simplicial complexes. We introduce the rapidly growing research on higher-order dynamical systems and dynamical topology, discussing the relations between higher-order interactions and collective behavior. We focus in particular on new emergent phenomena characterizing dynamical processes, such as diffusion, synchronization, spreading, social dynamics and games, when extended beyond pairwise interactions. We conclude with a summary of empirical applications, and an outlook on current modeling and conceptual frontiers.

MSC:

05C90 Applications of graph theory
37E25 Dynamical systems involving maps of trees and graphs
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
91D30 Social networks; opinion dynamics
90B10 Deterministic network models in operations research

References:

[1] Anderson, P. W., More is different, Science, 177, 4047, 393-396 (1972)
[2] Barabási, A.-L., The network takeover, Nat. Phys., 8, 1, 14 (2011)
[3] Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 1, 32-39 (2012)
[4] Boguna, M.; Bonamassa, I.; De Domenico, M.; Havlin, S.; Krioukov, D.; Serrano, M., Network geometry (2020), arXiv:2001.03241
[5] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 6684, 440 (1998) · Zbl 1368.05139
[6] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[7] Bollobás, B., Random Graphs (2001), Cambridge University Press · Zbl 0997.05049
[8] Lovász, L., Large Networks and Graph Limits, vol. 60 (2012), American Mathematical Society · Zbl 1292.05001
[9] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 1, 47 (2002) · Zbl 1205.82086
[10] Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G., The statistical physics of real-world networks, Nat. Rev. Phys., 1, 1, 58-71 (2019)
[11] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of networks, Adv. Phys., 51, 4, 1079-1187 (2002)
[12] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[13] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 4-5, 175-308 (Fervier 2006) · Zbl 1371.82002
[14] Caldarelli, G., (Scale-Free Networks: Complex Webs in Nature and Technology. Scale-Free Networks: Complex Webs in Nature and Technology, Oxford Finance Series (2007), OUP Oxford) · Zbl 1119.94001
[15] Barrat, A.; Barthelemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008), Cambridge University Press · Zbl 1198.90005
[16] Newman, M. E.J., Networks: An Introduction (2010), Oxford University Press: Oxford University Press Oxford; New York · Zbl 1195.94003
[17] Estrada, E., The Structure of Complex Networks: Theory and Applications (2011), Oxford University Press, Inc.: Oxford University Press, Inc. New York, NY, USA
[18] Barabási, A.-L.; Pósfai, M., Network science (2016), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1353.94001
[19] Latora, V.; Nicosia, V.; Russo, G., Complex Networks: Principles, Methods and Applications (2017), Cambridge University Press · Zbl 1387.68003
[20] Menczer, F.; Fortunato, S.; Davis, C., A First Course in Network Science (2020), Cambridge University Press · Zbl 1432.90002
[21] Butts, C. T., Revisiting the foundations of network analysis, Science, 325, 5939, 414-416 (2009) · Zbl 1226.05240
[22] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125 (2012)
[23] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122 (2014)
[24] Benson, A. R.; Gleich, D. F.; Leskovec, J., Higher-order organization of complex networks, Science, 353, 6295, 163-166 (2016)
[25] Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F., Homological scaffolds of brain functional networks, J. R. Soc. Interface, 11, 101, 20140873 (2014)
[26] Sizemore, A. E.; Giusti, C.; Kahn, A.; Vettel, J. M.; Betzel, R. F.; Bassett, D. S., Cliques and cavities in the human connectome, J. Comput. Neurosci., 44, 1, 115-145 (2018) · Zbl 1402.92119
[27] Grilli, J.; Barabás, G.; Michalska-Smith, M. J.; Allesina, S., Higher-order interactions stabilize dynamics in competitive network models, Nature, 548, 7666, 210 (2017)
[28] Sanchez-Gorostiaga, A.; Bajić, D.; Osborne, M. L.; Poyatos, J. F.; Sanchez, A., High-order interactions dominate the functional landscape of microbial consortia, bioRxiv, 333534 (2018)
[29] Ganmor, E.; Segev, R.; Schneidman, E., Sparse low-order interaction network underlies a highly correlated and learnable neural population code, Proc. Natl. Acad. Sci. USA, 108, 23, 9679-9684 (2011)
[30] Levine, J. M.; Bascompte, J.; Adler, P. B.; Allesina, S., Beyond pairwise mechanisms of species coexistence in complex communities, Nature, 546, 7656, 56 (2017)
[31] Benson, A. R.; Abebe, R.; Schaub, M. T.; Jadbabaie, A.; Kleinberg, J., Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. USA, 115, 48, E11221-E11230 (2018)
[32] Centola, D., The spread of behavior in an online social network experiment, Science, 329, 5996, 1194-1197 (2010)
[33] Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118 (2001)
[34] Atkin, R. H., From cohomology in physics to Q-connectivity in social science, Int. J. Man-Mach. Stud., 4, 2, 139-167 (1972)
[35] Berge, C., Graphs and Hypergraphs (1973), North-Holland Pub. Co. · Zbl 0483.05029
[36] Atkin, R., Mathematical Structure in Human Affairs (1974), Heinemann Educational Publishers
[37] Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.; Moreno, Y.; Porter, M. A., Multilayer networks, J Comp. Netw., 2, 3, 203-271 (2014)
[38] De Domenico, M.; Granell, C.; Porter, M. A.; Arenas, A., The physics of spreading processes in multilayer networks, Nat. Phys., 12, 10, 901-906 (2016)
[39] Battiston, F.; Nicosia, V.; Latora, V., The new challenges of multiplex networks: Measures and models, Eur. Phys. J. Spec. Top., 226, 3, 401-416 (2017)
[40] Bianconi, G., Multilayer networks: Structure and function (2018), Oxford University Press · Zbl 1391.94004
[41] Aleta, A.; Moreno, Y., Multilayer networks in a nutshell, Annu. Rev. Condens. Matter Phys., 10, 45-62 (2019)
[42] Holme, P.; Saramäki, J., (Temporal Networks. Temporal Networks, Understanding Complex Systems (2013), Springer Berlin Heidelberg)
[43] Holme, P., Modern temporal network theory: A colloquium, Eur. Phys. J. B, 88, 9, 234 (2015)
[44] Lambiotte, R.; Rosvall, M.; Scholtes, I., From networks to optimal higher-order models of complex systems, Nat. Phys., 1 (2019)
[45] Bondy, J. A.; Murty, U. S.R., Graph Theory with Applications, vol. 290 (1976), Macmillan London · Zbl 1226.05083
[46] Alon, U., Biological networks: The tinkerer as an engineer, Science, 301, 5641, 1866-1867 (2003)
[47] Kashtan, N.; Alon, U., Spontaneous evolution of modularity and network motifs, Proc. Natl. Acad. Sci. USA, 102, 39, 13773-13778 (2005)
[48] Montoya, J. M.; Pimm, S. L.; Solé, R. V., Ecological networks and their fragility, Nature, 442, 7100, 259 (2006)
[49] Borgatti, S. P.; Mehra, A.; Brass, D. J.; Labianca, G., Network analysis in the social sciences, Science, 323, 5916, 892-895 (2009)
[50] McPherson, M.; Smith-Lovin, L.; Cook, J. M., Birds of a feather: Homophily in social networks, Annu. Rev. Sociol., 27, 1, 415-444 (2001)
[51] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S., Networks formed from interdependent networks, Nat. Phys., 8, 1, 40 (2012)
[52] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 7291, 1025 (2010)
[53] Bullmore, E.; Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 3, 186 (2009)
[54] Bassett, D. S.; Sporns, O., Network neuroscience, Nat. Neurosci., 20, 3, 353 (2017)
[55] Medaglia, J. D.; Lynall, M.-E.; Bassett, D. S., Cognitive network neuroscience, J. Cogn. Neurosci., 27, 8, 1471-1491 (2015)
[56] Boguñá, M.; Kitsak, M.; Krioukov, D., Cosmological networks, New J. Phys., 16, 9, 093031 (2014) · Zbl 1451.83114
[57] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 3-5, 75-174 (2010)
[58] Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T., Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 7043, 814 (2005)
[59] Karrer, B.; Newman, M. E.J., Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 1, 016107 (2011)
[60] Lancichinetti, A.; Fortunato, S., Limits of modularity maximization in community detection, Phys. Rev. E, 84, 6, 066122 (2011)
[61] Abbe, E.; Sandon, C., Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery, (2015 IEEE 56th Annual Symposium on Foundations of Computer Science (2015), IEEE), 670-688
[62] Lancichinetti, A.; Fortunato, S.; Radicchi, F., Benchmark graphs for testing community detection algorithms, Phys. Rev. E, 78, 4, 046110 (2008)
[63] Guillaume, J.-L.; Latapy, M., Bipartite structure of all complex networks, Inf. Process Lett., 90, 5, 215-221 (2004) · Zbl 1178.68031
[64] Guillaume, J.-L.; Latapy, M., Bipartite graphs as models of complex networks, Physica A, 371, 2, 795-813 (2006)
[65] Wasserman, S.; Faust, K., Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences) (1994), Cambridge University Press
[66] Newman, M. E.J.; Watts, D. J.; Strogatz, S. H., Random graph models of social networks, Proc. Natl. Acad. Sci. USA, 99, suppl 1, 2566-2572 (2002) · Zbl 1114.91362
[67] Guimerà, R.; Sales-Pardo, M.; Amaral, L. A.N., Module identification in bipartite and directed networks, Phys. Rev. E, 76, 3, 036102 (2007)
[68] Zhou, T.; Ren, J.; Medo, M.; Zhang, Y.-C., Bipartite network projection and personal recommendation, Phys. Rev. E, 76, 4, 046115 (2007)
[69] Zweig, K. A.; Kaufmann, M., A systematic approach to the one-mode projection of bipartite graphs, Soc. Netw. Anal. Min., 1, 3, 187-218 (2011)
[70] Schaub, M. T.; Segarra, S., Flow smoothing and denoising: Graph signal processing in the edge-space, (2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2018), IEEE), 735-739
[71] Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U., Network motifs: Simple building blocks of complex networks, Science, 298, 5594, 824-827 (2002)
[72] Alon, U., Network motifs: Theory and experimental approaches, Nat. Rev. Genet., 8, 6, 450 (2007)
[73] Morgan, S. E.; Achard, S.; Termenon, M.; Bullmore, E. T.; Vértes, P. E., Low-dimensional morphospace of topological motifs in human fMRI brain networks, Netw. Neurosci., 2, 02, 285-302 (2018)
[74] Avena-Koenigsberger, A.; Goñi, J.; Solé, R.; Sporns, O., Network morphospace, J. R. Soc. Interface, 12, 103, 20140881 (2015)
[75] Shen-Orr, S. S.; Milo, R.; Mangan, S.; Alon, U., Network motifs in the transcriptional regulation network of Escherichia coli, Nat. Genet., 31, 1, 64 (2002)
[76] Fowler, J. H.; Dawes, C. T.; Christakis, N. A., Model of genetic variation in human social networks, Proc. Natl. Acad. Sci. USA, 106, 6, 1720-1724 (2009)
[77] Paranjape, A.; Benson, A. R.; Leskovec, J., Motifs in temporal networks, (Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (2017), ACM), 601-610
[78] Kovanen, L.; Karsai, M.; Kaski, K.; Kertész, J.; Saramäki, J., Temporal motifs in time-dependent networks, J. Stat. Mech. Theory Exp., 2011, 11, P11005 (2011)
[79] Mahadevan, P.; Krioukov, D.; Fall, K.; Vahdat, A., Systematic topology analysis and generation using degree correlations, (ACM SIGCOMM Comp. Com. Review, vol. 36 (2006), ACM), 135-146
[80] Orsini, C.; Dankulov, M. M.; Colomer-de-Simón, P.; Jamakovic, A.; Mahadevan, P.; Vahdat, A.; Bassler, K. E.; Toroczkai, Z.; Boguná, M.; Caldarelli, G., Quantifying randomness in real networks, Nature Commun., 6, 8627 (2015)
[81] Derényi, I.; Palla, G.; Vicsek, T., Clique percolation in random networks, Phys. Rev. Lett., 94, 16, 160202 (2005)
[82] Dunbar, R. I.; Spoors, M., Social networks, support cliques, and kinship, Hum. Nat., 6, 3, 273-290 (1995)
[83] Provan, K. G.; Sebastian, J. G., Networks within networks: Service link overlap, organizational cliques, and network effectiveness, Acad. Manage. J., 41, 4, 453-463 (1998)
[84] Hatcher, A., Algebraic Topology (2002), Cambridge University Press · Zbl 1044.55001
[85] Horak, D.; Jost, J., Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303-336 (2013) · Zbl 1290.05103
[86] Muhammad, A.; Egerstedt, M., Control using higher order Laplacians in network topologies, (Proc. of 17th International Symposium on Mathematical Theory of Networks and Systems (2006), Citeseer), 1024-1038
[87] Costa, A.; Farber, M., Random simplicial complexes, (Configuration Spaces (2016), Springer: Springer Berlin), 129-153 · Zbl 1398.55011
[88] Bianconi, G.; Rahmede, C., Network geometry with flavor: From complexity to quantum geometry, Phys. Rev. E, 93, 3, 032315 (2016)
[89] Ghrist, R., Elementary Applied Topology (2014), CreateSpace Independent Publishing Platform · Zbl 1427.55001
[90] Carlsson, G., Topology and data, Bull. Amer. Math. Soc., 46, 2, 255-308 (2009) · Zbl 1172.62002
[91] Patania, A.; Vaccarino, F.; Petri, G., Topological analysis of data, EPJ Data Sci., 6, 1, 7 (2017)
[92] Expert, P.; Lord, L.-D.; Kringelbach, M. L.; Petri, G., Editorial: Topological neuroscience, Netw. Neurosci., 3, 3, 653-655 (2019)
[93] Higuchi, A.; Miyoshi, H.; Tsujishita, T., Higher dimensional hypercategories (1999), arXiv:math/9907150
[94] Louis, A., Hypergraph Markov operators, eigenvalues and approximation algorithms, (Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing (2015), ACM), 713-722 · Zbl 1321.05174
[95] Chan, T.-H. H.; Louis, A.; Tang, Z. G.; Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM JACM, 65, 3, 15 (2018) · Zbl 1426.05163
[96] Chan, T.-H. H.; Liang, Z., Generalizing the hypergraph Laplacian via a diffusion process with mediators, Theoret. Comput. Sci. (2019) · Zbl 1442.05144
[97] Ghoshal, G.; Zlatić, V.; Caldarelli, G.; Newman, M., Random hypergraphs and their applications, Phys. Rev. E, 79, 6, 066118 (2009)
[98] Kumar, T.; Vaidyanathan, S.; Ananthapadmanabhan, H.; Parthasarathy, S.; Ravindran, B., Hypergraph clustering: A modularity maximization approach (2018), arXiv:1812.10869
[99] Chodrow, P.; Mellor, A., Annotated hypergraphs: Models and applications, Appl. Netw. Sci., 5, 1, 9 (2020)
[100] Torres, L.; Blevins, A. S.; Bassett, D. S.; Eliassi-Rad, T., The why, how, and when of representations for complex systems (2020), arXiv:2006.02870
[101] Estrada, E.; Rodríguez-Velázquez, J. A., Complex networks as hypergraphs (2005), arXiv:physics/0505137
[102] Kamiński, B.; Poulin, V.; Prałat, P.; Szufel, P.; Theberge, F., Clustering via hypergraph modularity, PLoS One, 14, 11 (2019)
[103] Zhou, D.; Huang, J.; Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, (Advances in Neural Information Processing Systems (2007)), 1601-1608
[104] Chodrow, P. S., Configuration models of random hypergraphs and their applications (2019), arXiv:1902.09302
[105] Rodriguez, J. A., On the Laplacian spectrum and walk-regular hypergraphs, Linear Multilinear Algebra, 51, 3, 285-297 (2003) · Zbl 1050.05085
[106] A. Bellaachia, M. Al-Dhelaan, Random walks in hypergraph, in: Proceedings of the 2013 International Conference on Applied Mathematics and Computational Methods, Venice Italy, 2013, pp. 187-194. · Zbl 1301.00062
[107] Avin, C.; Lando, Y.; Lotker, Z., Radio cover time in hyper-graphs, (Proceedings of the 6th International Workshop on Foundations of Mobile Computing (2010), ACM), 3-12
[108] Young, J.-G.; Petri, G.; Vaccarino, F.; Patania, A., Construction of and efficient sampling from the simplicial configuration model, Phys. Rev. E, 96, 3, 032312 (2017)
[109] Goldberg, T. E., Combinatorial Laplacians of simplicial complexes, Sr. Thesis Bard Coll. (2002)
[110] Maletić, S.; Rajković, M.; Vasiljević, D., Simplicial complexes of networks and their statistical properties, (International Conference on Computational Science (2008), Springer), 568-575
[111] Duval, A.; Reiner, V., Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc., 354, 11, 4313-4344 (2002) · Zbl 1016.05052
[112] Serrano, D. H.; Gómez, D. S., Higher order degree in simplicial complexes, multi combinatorial Laplacian and applications of TDA to complex networks (2019), arXiv:1908.02583
[113] Estrada, E.; Ross, G. J., Centralities in simplicial complexes. Applications to protein interaction networks, J. Theoret. Biol., 438, 46-60 (2018) · Zbl 1394.92040
[114] Courtney, O. T.; Bianconi, G., Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93, 6, 062311 (2016)
[115] Patania, A.; Petri, G.; Vaccarino, F., The shape of collaborations, EPJ Data Sci., 6, 1, 18 (2017)
[116] Kapoor, K.; Sharma, D.; Srivastava, J., Weighted node degree centrality for hypergraphs, (2013 IEEE 2nd Network Science Workshop (NSW) (2013), IEEE), 152-155
[117] Jiang, B.; Omer, I., Spatial topology and its structural analysis based on the concept of simplicial complex, Trans. GIS, 11, 6, 943-960 (2007)
[118] Serrano, D. H.; Gómez, D. S., Centrality measures in simplicial complexes: Applications of TDA to network science (2019), arXiv:1908.02967
[119] Lu, L.; Peng, X., High-ordered random walks and generalized Laplacians on hypergraphs, (International Workshop on Algorithms and Models for the Web-Graph (2011), Springer), 14-25 · Zbl 1328.05106
[120] Estrada, E.; Rodríguez-Velázquez, J. A., Subgraph centrality and clustering in complex hyper-networks, Physica A, 364, 581-594 (2006)
[121] Aksoy, S. G.; Joslyn, C.; Ortiz Marrero, C.; Praggastis, B.; Purvine, E., Hypernetwork science via high-order hypergraph walks, EPJ Data Science, 9, 1-34 (2020)
[122] Bonacich, P., Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 1, 113-120 (1972)
[123] Newman, M. E.J., Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103, 23, 8577-8582 (2006)
[124] Langville, A. N.; Meyer, C. D., Deeper inside pagerank, Internet Math., 1, 3, 335-380 (2004) · Zbl 1098.68010
[125] Fletcher, J. M.; Wennekers, T., From structure to activity: Using centrality measures to predict neuronal activity, Int. J. Neural Syst., 28, 02, 1750013 (2018)
[126] Bonacich, P., Simultaneous group and individual centralities, Soc. Netw., 13, 2, 155-168 (1991)
[127] Bonacich, P.; Holdren, A. C.; Johnston, M., Hyper-edges and multidimensional centrality, Soc. Netw., 26, 3, 189-203 (2004)
[128] Benson, A. R., Three hypergraph eigenvector centralities, SIAM J. Math. Data Sci., 1, 2, 293-312 (2019) · Zbl 1499.05432
[129] Qi, L.; Luo, Z., Tensor Analysis: Spectral Theory and Special Tensors, vol. 151 (2017), Siam · Zbl 1370.15001
[130] Granovetter, M. S., The strength of weak ties, (Social Networks (1977), Elsevier), 347-367
[131] Opsahl, T., Triadic closure in two-mode networks: Redefining the global and local clustering coefficients, Soc. Netw., 35, 2, 159-167 (2013)
[132] Borgatti, S. P.; Everett, M. G., Network analysis of 2-mode data, Soc. Netw., 19, 3, 243-269 (1997)
[133] Kartun-Giles, A. P.; Bianconi, G., Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks, Chaos Solitons Fractals X, 1, 100004 (2019)
[134] Yin, H.; Benson, A. R.; Leskovec, J.; Gleich, D. F., Local higher-order graph clustering, (Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017), ACM), 555-564
[135] Edelsbrunner, H., (A Short Course in Computational Geometry and Topology. A Short Course in Computational Geometry and Topology, SpringerBriefs in Applied Sciences and Technology (2014), Springer International Publishing) · Zbl 1315.55001
[136] Ghrist, R., Barcodes: The persistent topology of data, Bull. Amer. Math. Soc., 45, 1, 61-75 (2008) · Zbl 1391.55005
[137] Verri, A.; Uras, C.; Frosini, P.; Ferri, M., On the use of size functions for shape analysis, Biol. Cybernet., 70, 2, 99-107 (1993) · Zbl 0789.92030
[138] Cagliari, F.; Ferri, M.; Pozzi, P., Size functions from a categorical viewpoint, Acta Appl. Math., 67, 3, 225-235 (2001) · Zbl 0995.68098
[139] Edelsbrunner, H.; Letscher, D.; Zomorodian, A., Topological persistence and simplification, (Proceedings 41st Annual Symposium on Foundations of Computer Science (2000), IEEE), 454-463
[140] Zomorodian, A.; Carlsson, G., Computing persistent homology, Discrete Comput. Geom., 33, 2, 249-274 (2005) · Zbl 1069.55003
[141] Feng, M.; Porter, M. A., Persistent homology of geospatial data: A case study with voting (2019), arXiv:1902.05911
[142] Carlsson, G.; De Silva, V., Zigzag persistence, Found. Comput. Math., 10, 4, 367-405 (2010) · Zbl 1204.68242
[143] Carlsson, G.; Zomorodian, A., The theory of multidimensional persistence, Discrete Comput. Geom., 42, 1, 71-93 (2009) · Zbl 1187.55004
[144] Edelsbrunner, H.; Morozov, D., Persistent homology, (Handbook of Discrete and Computational Geometry (2017), Chapman and Hall/CRC), 637-661
[145] Otter, N.; Porter, M. A.; Tillmann, U.; Grindrod, P.; Harrington, H. A., A roadmap for the computation of persistent homology, EPJ Data Sci., 6, 1, 17 (2017)
[146] Muldoon, M.; MacKay, R.; Huke, J.; Broomhead, D., Topology from time series, Physica D, 65, 1-2, 1-16 (1993) · Zbl 0778.58045
[147] Adler, R. J.; Bartz, K.; Kou, S. C.; Monod, A., Estimating thresholding levels for random fields via Euler characteristics (2017), arXiv:1704.08562
[148] Pranav, P.; Van de Weygaert, R.; Vegter, G.; Jones, B. J.; Adler, R. J.; Feldbrugge, J.; Park, C.; Buchert, T.; Kerber, M., Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals, Mon. Not. R. Astron. Soc., 485, 3, 4167-4208 (2019)
[149] Maletić, S.; Rajković, M., Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks, Eur. Phys. J. ST, 1, 77-97 (2012)
[150] Lim, L.-H., Hodge Laplacians on graphs, Proc. Symp. Appl. Math. (2015)
[151] Parzanchevski, O.; Rosenthal, R., Simplicial complexes: Spectrum, homology and random walks, Random Struct. Algorithms, 50, 2, 225-261 (2017) · Zbl 1359.05114
[152] Schaub, M. T.; Benson, A. R.; Horn, P.; Lippner, G.; Jadbabaie, A., Random walks on simplicial complexes and the normalized Hodge Laplacian, SIAM Rev., 62, 2, 353-391 (2020) · Zbl 1441.05205
[153] Rodriguez, J., Laplacian eigenvalues and partition problems in hypergraphs, Appl. Math. Lett., 22, 6, 916-921 (2009) · Zbl 1188.05093
[154] Chung, F., The Laplacian of a hypergraph, Expand. Graphs DIMACS Ser., 21-36 (1993) · Zbl 0790.05061
[155] Saito, S.; Mandic, D. P.; Suzuki, H., Hypergraph p-Laplacian: A differential geometry view, (Thirty-Second AAAI Conference on Artificial Intelligence (2018))
[156] Cooper, J.; Dutle, A., Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 9, 3268-3292 (2012) · Zbl 1238.05183
[157] Hu, S.; Qi, L., The Laplacian of a uniform hypergraph, J. Comb. Optim., 29, 2, 331-366 (2015) · Zbl 1309.05120
[158] Li, P.; Milenkovic, O., Submodular hypergraphs: P-Laplacians, cheeger inequalities and spectral clustering, (Proceedings of the 35th International Conference on Machine Learning (2018)), 3014-3023
[159] Lucas, M.; Cencetti, G.; Battiston, F., A multi-order Laplacian for synchronization in higher-order networks (2020), arXiv:2003.09734
[160] Krioukov, D.; Ostilli, M., Duality between equilibrium and growing networks, Phys. Rev. E, 88, 2, 022808 (2013)
[161] Coolen, A. C.; Annibale, A.; Roberts, E., Generating Random Networks and Graphs (2017), Oxford University Press · Zbl 1365.05003
[162] Bianconi, G.; Capocci, A., Number of loops of size h in growing scale-free networks, Phys. Rev. Lett., 90, 7, 078701 (2003)
[163] Serrano, M. A.; Boguná, M., Tuning clustering in random networks with arbitrary degree distributions, Phys. Rev. E, 72, 3, 036133 (2005)
[164] Bollobás, B.; Erdös, P., Cliques in random graphs, (Mathematical Proceedings of the Cambridge Philosophical Society, vol. 80 (1976), Cambridge University Press), 419-427 · Zbl 0344.05155
[165] Fosdick, B. K.; Larremore, D. B.; Nishimura, J.; Ugander, J., Configuring random graph models with fixed degree sequences, SIAM Rev., 60, 2, 315-355 (2018) · Zbl 1387.05235
[166] Diamond, J. M., Assembly of species communities, Ecol. Evol. Commun., 342-444 (1975)
[167] Connor, E. F.; Simberloff, D., The assembly of species communities: Chance or competition?, Ecology, 60, 6, 1132-1140 (1979)
[168] Gail, M.; Mantel, N., Counting the number of r× c contingency tables with fixed margins, J. Am. Stat. Assoc., 72, 360a, 859-862 (1977) · Zbl 0372.62042
[169] Verbeek, A.; Kroonenberg, P. M., A survey of algorithms for exact distributions of test statistics in r×c contingency tables with fixed margins, Comput. Statist. Data Anal., 3, 159-185 (1985) · Zbl 0586.62083
[170] Saracco, F.; Di Clemente, R.; Gabrielli, A.; Squartini, T., Randomizing bipartite networks: The case of the World Trade Web, Sci. Rep., 5, 10595 (2015)
[171] Payrató-Borràs, C.; Hernández, L.; Moreno, Y., Breaking the spell of nestedness: The entropic origin of nestedness in mutualistic systems, Phys. Rev. X, 9, 3, 031024 (2019)
[172] Kitsak, M.; Krioukov, D., Hidden variables in bipartite networks, Phys. Rev. E, 84, 2, 026114 (2011)
[173] Boroojeni, A. A.; Dewar, J.; Wu, T.; Hyman, J. M., Generating bipartite networks with a prescribed joint degree distribution, J. Complex Netw., 5, 6, 839-857 (2017) · Zbl 1458.90163
[174] Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E, 66, 6, 066121 (2002)
[175] Allard, A.; Noël, P.-A.; Dubé, L. J.; Pourbohloul, B., Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics, Phys. Rev. E, 79, 3, 036113 (2009)
[176] Fu, X.; Yu, S.; Benson, A. R., Modeling and analysis of tagging networks in stack exchange communities, J. Complex Netw. (2019)
[177] Wasserman, S.; Pattison, P., Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp, Psychometrika, 61, 3, 401-425 (1996) · Zbl 0866.92029
[178] Snijders, T. A.; Pattison, P. E.; Robins, G. L.; Handcock, M. S., New specifications for exponential random graph models, Sociol. Methodol., 36, 1, 99-153 (2006)
[179] Frank, O.; Strauss, D., Markov graphs, J. Amer. Statist. Assoc., 81, 395, 832-842 (1986) · Zbl 0607.05057
[180] Holland, P. W.; Leinhardt, S., An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 373, 33-50 (1981) · Zbl 0457.62090
[181] Latapy, M.; Magnien, C.; Del Vecchio, N., Basic notions for the analysis of large two-mode networks, Soc Netw., 30, 1, 31-48 (2008)
[182] Iacobucci, D.; Wasserman, S., Social networks with two sets of actors, Psychometrika, 55, 4, 707-720 (1990)
[183] Skvoretz, J.; Faust, K., Logit models for affiliation networks, Sociol. Methodol., 29, 1, 253-280 (1999)
[184] Robins, G.; Alexander, M., Small worlds among interlocking directors: Network structure and distance in bipartite graphs, Comput. Math. Organ. Theory, 10, 1, 69-94 (2004) · Zbl 1078.91579
[185] Agneessens, F.; Roose, H.; Waege, H., Choices of theatre events: P* models for affiliation networks with attributes, Metod. Zv., 1, 2, 419 (2004)
[186] Strauss, D., On a general class of models for interaction, SIAM Rev., 28, 4, 513-527 (1986) · Zbl 0612.60066
[187] Handcock, M. S., Statistical models for social networks: inference and degeneracy, (Breiger, R.; Carley, K.; Pattison, P., Dynamic Social Network Modeling and Analysis. (2003), National Academies Press, (Washington, DC)), 229-240
[188] Fischer, R.; Leitão, J. C.; Peixoto, T. P.; Altmann, E. G., Sampling motif-constrained ensembles of networks, Phys. Rev. Lett., 115, 18, 188701 (2015)
[189] Wang, P.; Sharpe, K.; Robins, G. L.; Pattison, P. E., Exponential random graph (P*) models for affiliation networks, Soc. Netw., 31, 1, 12-25 (2009)
[190] Wang, P.; Pattison, P.; Robins, G., Exponential random graph model specifications for bipartite networks—A dependence hierarchy, Soc. Netw., 35, 2, 211-222 (2013)
[191] Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D., An introduction to exponential random graph (P*) models for social networks, Soc. Netw., 29, 2, 173-191 (2007)
[192] Smith, J. A., Macrostructure from microstructure: Generating whole systems from ego networks, Sociol. Methodol., 42, 1, 155-205 (2012)
[193] Jasny, L., Baseline models for two-mode social network data, Policy Stud. J., 40, 3, 458-491 (2012)
[194] Faust, K.; Willert, K. E.; Rowlee, D. D.; Skvoretz, J., Scaling and statistical models for affiliation networks: Patterns of participation among Soviet politicians during the Brezhnev era, Soc Netw., 24, 3, 231-259 (2002)
[195] Snijders, T. A., Markov chain Monte Carlo estimation of exponential random graph models, J. Soc. Struct., 3, 2, 1-40 (2002)
[196] Shalizi, C. R.; Rinaldo, A., Consistency under sampling of exponential random graph models, Ann. Statist., 41, 2, 508 (2013) · Zbl 1269.91066
[197] Crane, H., Probabilistic Foundations of Statistical Network Analysis (2018), Chapman and Hall/CRC · Zbl 1490.62001
[198] Young, J.-G.; St-Onge, G.; Desrosiers, P.; Dubé, L. J., Universality of the stochastic block model, Phys. Rev. E, 98, 3, 032309 (2018)
[199] Newman, M. E.J., Communities, modules and large-scale structure in networks, Nat. Phys., 8, 1, 25-31 (2012)
[200] Newman, M. E.J., Mixing patterns in networks, Phys. Rev. E, 67, 2, 026126 (2003)
[201] Borgatti, S. P.; Everett, M. G., Models of core/periphery structures, Soc. Netw., 21, 4, 375-395 (2000)
[202] Holland, P. W.; Laskey, K. B.; Leinhardt, S., Stochastic blockmodels: First steps, Soc. Networks, 5, 2, 109-137 (1983)
[203] Doreian, P.; Batagelj, V.; Ferligoj, A., Generalized blockmodeling of two-mode network data, Soc. Netw., 26, 1, 29-53 (2004)
[204] Rohe, K.; Qin, T.; Yu, B., Co-clustering directed graphs to discover asymmetries and directional communities, Proc. Natl. Acad. Sci. USA, 113, 45, 12679-12684 (2016) · Zbl 1406.91306
[205] Larremore, D. B.; Clauset, A.; Jacobs, A. Z., Efficiently inferring community structure in bipartite networks, Phys. Rev. E, 90, 1, 012805 (2014)
[206] Olhede, S. C.; Wolfe, P. J., Network histograms and universality of blockmodel approximation, Proc. Natl. Acad. Sci. USA, 111, 41, 14722-14727 (2014)
[207] Peixoto, T. P., Entropy of stochastic blockmodel ensembles, Phys. Rev. E, 85, 5, 056122 (2012)
[208] Guimerà, R.; Llorente, A.; Moro, E.; Sales-Pardo, M., Predicting human preferences using the block structure of complex social networks, PLoS One, 7, 9, Article e44620 pp. (2012)
[209] Ball, B.; Karrer, B.; Newman, M. E.J., Efficient and principled method for detecting communities in networks, Phys. Rev. E, 84, 3, 036103 (2011)
[210] Hric, D.; Peixoto, T. P.; Fortunato, S., Network structure, metadata, and the prediction of missing nodes and annotations, Phys. Rev. X, 6, 3, 031038 (2016)
[211] Gerlach, M.; Peixoto, T. P.; Altmann, E. G., A network approach to topic models, Sci. Adv., 4, 7, eaaq1360 (2018)
[212] Blei, D. M.; Ng, A. Y.; Jordan, M. I., Latent Dirichlet allocation, J. Mach. Learn. Res., 3, Jan, 993-1022 (2003) · Zbl 1112.68379
[213] Sheng, Q.; Moreau, Y.; De Moor, B., Biclustering microarray data by Gibbs sampling, Bioinformatics, 19, suppl_2, ii196-ii205 (2003)
[214] Iyer, S. K.; Yogeshwaran, D., Percolation and connectivity in AB random geometric graphs, Adv. Appl. Probab., 44, 1, 21-41 (2012) · Zbl 1248.60016
[215] Penrose, M., Random Geometric Graphs, vol. 5 (2003), Oxford University Press · Zbl 1029.60007
[216] Waxman, B. M., Routing of multipoint connections, IEEE J. Sel. Areas Commun., 6, 9, 1617-1622 (1988)
[217] Serrano, M. A.; Krioukov, D.; Boguná, M., Self-similarity of complex networks and hidden metric spaces, Phys. Rev. Lett., 100, 7, 078701 (2008)
[218] Kitsak, M.; Papadopoulos, F.; Krioukov, D., Latent geometry of bipartite networks, Phys. Rev. E, 95, 3, 032309 (2017)
[219] Mézard, M.; Montanari, A., Uncovering the hidden geometry behind metabolic networks, Mol. Biosyst., 8, 3, 843-850 (2012)
[220] Krioukov, D., Clustering implies geometry in networks, Phys. Rev. Lett., 116, 20, 208302 (2016)
[221] Newman, M. E.J., Properties of highly clustered networks, Phys. Rev. E, 68, 2, 026121 (2003)
[222] Davis, J. A.; Leinhardt, S., The Structure of Positive Interpersonal Relations in Small Groups (1967), ERIC
[223] Holland, P. W.; Leinhardt, S., Local structure in social networks, Sociol. Methodol., 7, 1-45 (1976)
[224] Gleeson, J. P.; Melnik, S., Analytical results for bond percolation and K-Core sizes on clustered networks, Phys. Rev. E, 80, 4, 046121 (2009)
[225] Trapman, P., On analytical approaches to epidemics on networks, Theor. Popul. Biol., 71, 2, 160-173 (2007) · Zbl 1118.92055
[226] Newman, M. E.J., Random graphs with clustering, Phys. Rev. Lett., 103, 5, 058701 (2009)
[227] Miller, J. C., Percolation and epidemics in random clustered networks, Phys. Rev. E, 80, 2, 020901 (2009)
[228] Gleeson, J. P., Bond percolation on a class of clustered random networks, Phys. Rev. E, 80, 3, 036107 (2009)
[229] Karrer, B.; Newman, M. E.J., Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E, 82, 6, 066118 (2010)
[230] Allard, A.; Hébert-Dufresne, L.; Noël, P.-A.; Marceau, V.; Dubé, L. J., Bond percolation on a class of correlated and clustered random graphs, J. Phys. Math. Theor., 45, 40, 405005 (2012) · Zbl 1252.82058
[231] Allard, A.; Hébert-Dufresne, L.; Young, J.-G.; Dubé, L. J., General and exact approach to percolation on random graphs, Phys. Rev. E, 92, 6, 062807 (2015)
[232] Ritchie, M.; Berthouze, L.; Kiss, I. Z., Generation and analysis of networks with a prescribed degree sequence and subgraph family: Higher-order structure matters, J. Complex Netw., 5, 1, 1-31 (2017) · Zbl 1458.90184
[233] Wegner, A. E., Subgraph covers: An information-theoretic approach to motif analysis in networks, Phys. Rev. X, 4, 4, 041026 (2014)
[234] Bollobás, B.; Janson, S.; Riordan, O., Sparse random graphs with clustering, Random Struct. Algorithms, 38, 3, 269-323 (2011) · Zbl 1220.05117
[235] Newman, M. E.J.; Peixoto, T. P., Generalized communities in networks, Phys. Rev. Lett., 115, 8, 088701 (2015)
[236] Devanny, W.; Eppstein, D.; Tillman, B., The computational hardness of Dk-series, (NetSci 2016 (2016))
[237] Pattison, P.; Robins, G., Neighborhood-based models for social networks, Sociol. Methodol., 32, 1, 301-337 (2002)
[238] Watts, D. J.; Dodds, P. S.; Newman, M. E.J., Identity and search in social networks, Science, 296, 5571, 1302-1305 (2002)
[239] Yang, J.; Leskovec, J., Community-affiliation graph model for overlapping network community detection, (2012 IEEE 12th International Conference on Data Mining (2012), IEEE), 1170-1175
[240] Hébert-Dufresne, L.; Noël, P.-A.; Marceau, V.; Allard, A.; Dubé, L. J., Propagation dynamics on networks featuring complex topologies, Phys. Rev. E, 82, 3, 036115 (2010)
[241] Seshadhri, C.; Kolda, T. G.; Pinar, A., Community structure and scale-free collections of Erdős-Rényi graphs, Phys. Rev. E, 85, 5, 056109 (2012)
[242] Karoński, M.; Scheinerman, E. R.; Singer-Cohen, K. B., On random intersection graphs: The subgraph problem, Combin. Probab. Comput., 8, 1-2, 131-159 (1999) · Zbl 0924.05059
[243] Erdös, P.; Goodman, A. W.; Pósa, L., The representation of a graph by set intersections, Canad. J. Math., 18, 106-112 (1966) · Zbl 0137.43202
[244] Frieze, A.; Karoński, M., Introduction to Random Graphs (2016), Cambridge University Press · Zbl 1328.05002
[245] Nikoletseas, S.; Raptopoulos, C.; Spirakis, P., Large independent sets in general random intersection graphs, Theoret. Comput. Sci., 406, 3, 215-224 (2008) · Zbl 1151.68044
[246] Deijfen, M.; Kets, W., Random intersection graphs with tunable degree distribution and clustering, Probab. Engrg. Inform. Sci., 23, 4, 661-674 (2009) · Zbl 1180.68212
[247] Godehardt, E.; Jaworski, J., Two models of random intersection graphs for classification, (Exploratory Data Analysis in Empirical Research (2003), Springer), 67-81
[248] Davis, G. B.; Carley, K. M., Clearing the FOG: Fuzzy, overlapping groups for social networks, Soc. Netw., 30, 3, 201-212 (2008)
[249] Barber, D., Clique matrices for statistical graph decomposition and parameterising restricted positive definite matrices, Uncertain. Artif. Intell., 26-33 (2008)
[250] S.A. Williamson, M. Tec, Random clique covers for graphs with local density and global sparsity, in: Proceedings of the 2019 Conference on Uncertainty in Artificial Intelligence, 2018.
[251] Ball, F. G.; Sirl, D. J.; Trapman, P., Epidemics on random intersection graphs, Ann. Appl. Probab., 24, 3, 1081-1128 (2014) · Zbl 1291.92098
[252] Xie, J.; Kelley, S.; Szymanski, B. K., Overlapping community detection in networks: The state-of-the-art and comparative study, Acm Comput. Surv. Csur, 45, 4, 43 (2013) · Zbl 1288.68191
[253] Erdős, P., On random graphs I, Publ. Math., 6, 290-297 (1959) · Zbl 0092.15705
[254] Gilbert, E. N., Random graphs, Ann. Math. Stat., 30, 4, 1141-1144 (1959) · Zbl 0168.40801
[255] Erdős, P.; Rényi, A., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 5, 1, 17-60 (1960) · Zbl 0103.16301
[256] De La Vega, W. F., Sur La Cardinalité Maximum Des Couplages d’hypergraphes Aléatoires Uniformes, Discrete Math., 40, 2-3, 315-318 (1982) · Zbl 0488.05051
[257] Schmidt-Pruzan, J.; Shamir, E., Component structure in the evolution of random hypergraphs, Combinatorica, 5, 1, 81-94 (1985) · Zbl 0573.05042
[258] de Arruda, G. F.; Petri, G.; Moreno, Y., Social contagion models on hypergraphs, Phys. Rev. Res., 2, 2, 023032 (2020)
[259] Darling, R. W.; Norris, J. R., Structure of large random hypergraphs, Ann. Appl. Probab., 15, 1A, 125-152 (2005) · Zbl 1062.05132
[260] Mezard, M.; Mezard, M.; Montanari, A., Information, Physics, and Computation (2009), Oxford University Press · Zbl 1163.94001
[261] Dembo, A.; Montanari, A., Finite size scaling for the core of large random hypergraphs, Ann. Appl. Probab., 18, 5, 1993-2040 (2008) · Zbl 1152.05051
[262] Schmidt, J.; Shamir, E., A threshold for perfect matchings in random D-pure hypergraphs, Discrete Math., 45, 2-3, 287-295 (1983) · Zbl 0512.05047
[263] Chen, H.; Frieze, A., Coloring bipartite hypergraphs, (International Conference on Integer Programming and Combinatorial Optimization (1996), Springer), 345-358 · Zbl 1415.90133
[264] Demetrovics, J.; Katona, G. O.; Miklós, D.; Seleznjev, O.; Thalheim, B., Asymptotic properties of keys and functional dependencies in random databases, Theoret. Comput. Sci., 190, 2, 151-166 (1998) · Zbl 0893.68052
[265] Bradde, S.; Bianconi, G., The percolation transition in correlated hypergraphs, J. Stat. Mech. Theory Exp., 2009, 07, P07028 (2009) · Zbl 1459.82114
[266] Girvan, M.; Newman, M. E.J., Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99, 12, 7821-7826 (2002) · Zbl 1032.91716
[267] Newman, M. E.; Girvan, M., Finding and evaluating community structure in networks, Phys. Rev. E, 69, 2, 026113 (2004)
[268] Chung, F.; Lu, L., Connected components in random graphs with given expected degree sequences, Ann. Comb., 6, 2, 125-145 (2002) · Zbl 1009.05124
[269] Stasi, D.; Sadeghi, K.; Rinaldo, A.; Petrović, S.; Fienberg, S. E., \( \beta\) models for random hypergraphs with a given degree sequence (2014), arXiv:1407.1004 · Zbl 1436.91097
[270] Ghoshdastidar, D.; Dukkipati, A., Consistency of spectral partitioning of uniform hypergraphs under planted partition model, (Advances in Neural Information Processing Systems (2014)), 397-405
[271] Ke, Z. T.; Shi, F.; Xia, D., Community detection for hypergraph networks via regularized tensor power iteration (2019), arXiv:1909.06503
[272] Ahn, K.; Lee, K.; Suh, C., Hypergraph spectral clustering in the weighted stochastic block model, IEEE J. Sel. Top. Signal Process., 12, 5, 959-974 (2018)
[273] Paul, S.; Milenkovic, O.; Chen, Y., Higher-order spectral clustering under superimposed stochastic block model (2018), arXiv:1812.06515
[274] Turnbull, K.; Lunagómez, S.; Nemeth, C.; Airoldi, E., Latent space representations of hypergraphs (2019), arXiv:1909.00472
[275] Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C., Realistic, mathematically tractable graph generation and evolution, using Kronecker multiplication, (European Conference on Principles of Data Mining and Knowledge Discovery (2005), Springer), 133-145
[276] Eikmeier, N.; Ramani, A.; Gleich, D., The HyperKron Graph Model for higher-order features, (2018 IEEE International Conference on Data Mining (ICDM) (2018), IEEE), 941-946
[277] Kahle, M., Random geometric complexes, Discrete Comput. Geom., 45, 3, 553-573 (2011) · Zbl 1219.05175
[278] Linial, N.; Meshulam, R., Homological connectivity of random 2-complexes, Combinatorica, 26, 4, 475-487 (2006) · Zbl 1121.55013
[279] Kahle, M., Topology of random simplicial complexes: A survey, AMS Contemp. Math., 620, 201-222 (2014) · Zbl 1333.05324
[280] Meshulam, R.; Wallach, N., Homological connectivity of random K-dimensional complexes, Random Struct. Algorithms, 34, 3, 408-417 (2009) · Zbl 1177.55011
[281] Kahle, M., Topology of random clique complexes, Discrete Math., 309, 6, 1658-1671 (2009) · Zbl 1215.05163
[282] Fowler, C. F., Generalized random simplicial complexes (2015), arXiv:1503.01831
[283] Iacopini, I.; Petri, G.; Barrat, A.; Latora, V., Simplicial models of social contagion, Nature Commun., 10, 1, 2485 (2019)
[284] Alberici, D.; Contucci, P.; Mingione, E.; Molari, M., Aggregation models on hypergraphs, Ann. Phys., 376, 412-424 (2017) · Zbl 1364.82071
[285] Zuev, K.; Eisenberg, O.; Krioukov, D., Exponential random simplicial complexes, J. Phys. A, 48, 46, 465002 (2015) · Zbl 1331.90020
[286] Chazal, F.; Michel, B., An introduction to Topological Data Analysis: Fundamental and practical aspects for data scientists (2017), arXiv:1710.04019
[287] Kahle, M.; Meckes, E., Limit theorems for Betti numbers of random simplicial complexes, Homol. Homotopy Appl., 15, 1, 343-374 (2013) · Zbl 1268.05180
[288] Bobrowski, O.; Kahle, M., Topology of random geometric complexes: A survey, J. Appl. Comput. Topol., 1, 3-4, 331-364 (2018) · Zbl 1402.60015
[289] Fasy, B. T.; Lecci, F.; Rinaldo, A.; Wasserman, L.; Balakrishnan, S.; Singh, A., Confidence sets for persistence diagrams, Ann. Statist., 42, 6, 2301-2339 (2014) · Zbl 1310.62059
[290] Bianconi, G.; Ziff, R. M., Topological percolation on hyperbolic simplicial complexes, Phys. Rev. E, 98, 5, 052308 (2018)
[291] Bianconi, G.; Kryven, I.; Ziff, R. M., Percolation on branching simplicial and cell complexes and its relation to interdependent percolation, Phys. Rev. E, 100, 6, 062311 (2019)
[292] Overgoor, J.; Benson, A.; Ugander, J., Choosing to grow a graph: Modeling network formation as discrete choice, (The World Wide Web Conference (2019), ACM), 1409-1420
[293] Petri, G.; Barrat, A., Simplicial activity driven model, Phys. Rev. Lett., 121, 22, 228301 (2018)
[294] Ergün, G., Human sexual contact network as a bipartite graph, Physica A, 308, 1-4, 483-488 (2002) · Zbl 0995.91046
[295] Ramasco, J. J.; Dorogovtsev, S. N.; Pastor-Satorras, R., Self-organization of collaboration networks, Phys. Rev. E, 70, 3, 036106 (2004)
[296] Beguerisse Díaz, M.; Porter, M. A.; Onnela, J.-P., Competition for popularity in bipartite networks, Chaos, 20, 4, 043101 (2010)
[297] Sneppen, K.; Rosvall, M.; Trusina, A.; Minnhagen, P., A simple model for self-organization of bipartite networks, Europhys. Lett., 67, 3, 349 (2004)
[298] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 4, 381 (1987)
[299] Friel, N.; Rastelli, R.; Wyse, J.; Raftery, A. E., Interlocking directorates in Irish companies using a latent space model for bipartite networks, Proc. Natl. Acad. Sci. USA, 113, 24, 6629-6634 (2016)
[300] Evans, T., Exact solutions for network rewiring models, Eur. Phys. J. B, 56, 1, 65-69 (2007)
[301] Evans, T.; Plato, A., Exact solution for the time evolution of network rewiring models, Phys. Rev. E, 75, 5, 056101 (2007)
[302] Wu, Z.; Menichetti, G.; Rahmede, C.; Bianconi, G., Emergent complex network geometry, Sci. Rep., 5, 10073 (2015)
[303] Pollner, P.; Palla, G.; Vicsek, T., Preferential attachment of communities: The same principle, but a higher level, Europhys. Lett., 73, 3, 478 (2005)
[304] Zhou, X.; Xiang, L.; Xiao-Fan, W., Weighted evolving networks with self-organized communities, Commun. Theor. Phys., 50, 1, 261 (2008) · Zbl 1392.90034
[305] Hébert-Dufresne, L.; Allard, A.; Marceau, V.; Noël, P.-A.; Dubé, L. J., Structural preferential attachment: Network organization beyond the link, Phys. Rev. Lett., 107, 15, 158702 (2011)
[306] Hébert-Dufresne, L.; Allard, A.; Marceau, V.; Noël, P.-A.; Dubé, L. J., Structural preferential attachment: Stochastic process for the growth of scale-free, modular, and self-similar systems, Phys. Rev. E, 85, 2, 026108 (2012)
[307] Young, J.-G.; Hébert-Dufresne, L.; Allard, A.; Dubé, L. J., Growing networks of overlapping communities with internal structure, Phys. Rev. E, 94, 2, 022317 (2016)
[308] Hébert-Dufresne, L.; Laurence, E.; Allard, A.; Young, J.-G.; Dubé, L. J., Complex networks as an emerging property of hierarchical preferential attachment, Phys. Rev. E, 92, 6, 062809 (2015)
[309] Aldous, D. J., Exchangeability and related topics, (École d’Été de Probabilités de Saint-Flour XIII—1983 (1985), Springer), 1-198 · Zbl 0562.60042
[310] Griffiths, T. L.; Ghahramani, Z., The Indian buffet process: An introduction and review, J Mach Learn Res, 12, Apr, 1185-1224 (2011) · Zbl 1280.62038
[311] Zhang, Z.-K.; Liu, C., A hypergraph model of social tagging networks, J. Stat. Mech. Theory Exp., 2010, 10, P10005 (2010)
[312] Wang, J.-W.; Rong, L.-L.; Deng, Q.-H.; Zhang, J.-Y., Evolving hypernetwork model, Eur. Phys. J. B, 77, 4, 493-498 (2010)
[313] Liu, D.; Blenn, N.; Van Mieghem, P., A social network model exhibiting tunable overlapping community structure, Procedia Comput. Sci., 9, 1400-1409 (2012)
[314] Hu, F.; Guo, J.-L.; Li, F.-X.; Zhao, H.-X., Hypernetwork models based on random hypergraphs, Int. J. Mod. Phys. C IJMPC, 30, 08, 1-15 (2019)
[315] Guang-Yong, Y.; Jian-Guo, L., A local-world evolving hypernetwork model, Chin. Phys. B, 23, 1, 018901 (2013)
[316] Wu, Z.; Duan, J.; Fu, X., Synchronization of an evolving complex hyper-network, Appl. Math. Model., 38, 11-12, 2961-2968 (2014) · Zbl 1427.34071
[317] Guo, J.-L.; Zhu, X.-Y.; Suo, Q.; Forrest, J., Non-uniform evolving hypergraphs and weighted evolving hypergraphs, Sci. Rep., 6, 36648 (2016)
[318] Krapivsky, P. L.; Redner, S.; Leyvraz, F., Connectivity of growing random networks, Phys. Rev. Lett., 85, 21, 4629 (2000)
[319] Guo, J.-L.; Suo, Q., Brand effect versus competitiveness in hypernetworks, Chaos, 25, 2, 023102 (2015) · Zbl 1345.34036
[320] Bianconi, G., Interdisciplinary and physics challenges of network theory, Europhys. Lett., 111, 5, 56001 (2015)
[321] Bianconi, G.; Rahmede, C., Complex quantum network manifolds in dimension d¿2 are scale-free, Sci. Rep., 5, 13979 (2015)
[322] Bianconi, G.; Rahmede, C.; Wu, Z., Complex quantum network geometries: Evolution and phase transitions, Phys. Rev. E, 92, 2, 022815 (2015)
[323] Courtney, O. T.; Bianconi, G., Weighted growing simplicial complexes, Phys. Rev. E, 95, 6, 062301 (2017)
[324] Fountoulakis, N.; Iyer, T.; Mailler, C.; Sulzbach, H., Dynamical models for random simplicial complexes (2019), arXiv:1910.12715
[325] Sizemore, A. E.; Karuza, E. A.; Giusti, C.; Bassett, D. S., Knowledge gaps in the early growth of semantic feature networks, Nat. Hum. Behav., 2, 9, 682 (2018)
[326] Blevins, A. S.; Bassett, D. S., On the reorderability of node-filtered order complexes, Phys. Rev. E, 101, 052311 (2020)
[327] da Silva, D. C.; Bianconi, G.; da Costa, R. A.; Dorogovtsev, S. N.; Mendes, J. F., Complex network view of evolving manifolds, Phys. Rev. E, 97, 3, 032316 (2018)
[328] Courtney, O. T.; Bianconi, G., Dense power-law networks and simplicial complexes, Phys. Rev. E, 97, 5, 052303 (2018)
[329] Kim, B.; Schein, A.; Desmarais, B. A.; Wallach, H., The hyperedge event model (2018), arXiv:1807.08225
[330] Masuda, N.; Porter, M. A.; Lambiotte, R., Random walks and diffusion on networks, Phys. Rep. (2017) · Zbl 1377.05180
[331] Aldous, D.; Fill, J., Reversible Markov chains and random walks on graphs, Unfinished Monograph (2002)
[332] Samukhin, A.; Dorogovtsev, S.; Mendes, J., Laplacian spectra of, and random walks on, complex networks: Are scale-free architectures really important?, Phys. Rev. E, 77, 3, 036115 (2008)
[333] Hoffmann, T.; Porter, M. A.; Lambiotte, R., Generalized master equations for non-Poisson dynamics on networks, Phys. Rev. E, 86, 4, 046102 (2012)
[334] DeGroot, M. H., Reaching a consensus, J. Amer. Statist. Assoc., 69, 345, 118-121 (1974) · Zbl 0282.92011
[335] Boltzmann, L., Lectures on gas theory, English translation by S. Brush (1964), University of California Press, Berkeley-Los Angeles, Calif
[336] Tolman, R. C., The Principles of Statistical Mechanics (1979), Courier Corporation · JFM 64.0886.07
[337] Chung, F. R.; Graham, F. C., Spectral Graph Theory (1997), American Mathematical Soc. · Zbl 0867.05046
[338] Neuhäuser, L.; Mellor, A.; Lambiotte, R., Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E, 101, 3, 032310 (2020)
[339] Torres, J. J.; Bianconi, G., Simplicial complexes: Higher-order spectral dimension and dynamics, J. Phys.: Complex., 1, 015002 (2020)
[340] Burioni, R.; Cassi, D., Universal properties of spectral dimension, Phys. Rev. Lett., 76, 7, 1091 (1996)
[341] Millán, A. P.; Torres, J. J.; Bianconi, G., Synchronization in network geometries with finite spectral dimension, Phys. Rev. E, 99, 2, 022307 (2019)
[342] J. Jia, M.T. Schaub, S. Segarra, A.R. Benson, Graph-based semi-supervised & active learning for edge flows, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 761-771.
[343] Mukherjee, S.; Steenbergen, J., Random walks on simplicial complexes and harmonics, Random Struct. Algorithms, 49, 2, 379-405 (2016) · Zbl 1346.05301
[344] Dua, D.; Graff, C., UCI Machine Learning Repository (2017), University of California, Irvine, School of Information and Computer Sciences
[345] Carletti, T.; Battiston, F.; Cencetti, G.; Fanelli, D., Random walks on hypergraphs, Phys. Rev. E, 101, 2, 022308 (2020)
[346] U. Chitra, B.J. Raphael, Random walks on hypergraphs with edge-dependent vertex weights, in: Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 1172-1181.
[347] Agarwal, S.; Branson, K.; Belongie, S., Higher order learning with graphs, (Proceedings of the 23rd International Conference on Machine Learning (2006), ACM), 17-24
[348] Li, P.; Milenkovic, O., Inhomogeneous hypergraph clustering with applications, (Advances in Neural Information Processing Systems (2017)), 2308-2318
[349] Li, J.; He, J.; Zhu, Y., E-tail product return prediction via hypergraph-based local graph cut, (Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018), ACM), 519-527
[350] Ding, L.; Yilmaz, A., Interactive image segmentation using probabilistic hypergraphs, Pattern Recognit., 43, 5, 1863-1873 (2010) · Zbl 1191.68565
[351] Huang, Y.; Liu, Q.; Zhang, S.; Metaxas, D. N., Image retrieval via probabilistic hypergraph ranking, (2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010), IEEE), 3376-3383
[352] Ducournau, A.; Bretto, A., Random walks in directed hypergraphs and application to semi-supervised image segmentation, Comput. Vis. Image Underst., 120, 91-102 (2014)
[353] Zeng, K.; Wu, N.; Sargolzaei, A.; Yen, K., Learn to rank images: A unified probabilistic hypergraph model for visual search, Math. Probl. Eng., 2016 (2016) · Zbl 1400.68238
[354] Zhang, Z.; Lin, H.; Gao, Y.; BNRist, K., Dynamic hypergraph structure learning, (IJCAI (2018)), 3162-3169
[355] Chan, T.; Tang, Z. G.; Zhang, C., Spectral properties of Laplacian and stochastic diffusion process for edge expansion in hypergraphs (2015), arXiv:1510.01520
[356] Chan, T.-H. H.; Tang, Z. G.; Wu, X.; Zhang, C., Diffusion operator and spectral analysis for directed hypergraph Laplacian, Theoret. Comput. Sci., 784, 46-64 (2019) · Zbl 1428.05184
[357] Billings, J. C.W.; Hu, M.; Lerda, G.; Medvedev, A. N.; Mottes, F.; Onicas, A.; Santoro, A.; Petri, G., Simplex2Vec embeddings for community detection in simplicial complexes (2019), arXiv:1906.09068
[358] Salnikov, V.; Cassese, D.; Lambiotte, R., Simplicial complexes and complex systems, Eur. J. Phys., 40, 1, 014001 (2018) · Zbl 1420.55033
[359] Tran, L. H.; Tran, L. H.; Trang, H.; Hieu, L., Combinatorial and random walk hypergraph Laplacian eigenmaps, Int. J. Mach. Learn. Comput., 5, 6, 462 (2015)
[360] S.N. Satchidanand, H. Ananthapadmanaban, B. Ravindran, Extended discriminative random walk: A hypergraph approach to multi-view multi-relational transductive learning, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[361] Liu, Y.; Yuan, J.; Duan, B.; Li, D., Quantum walks on regular uniform hypergraphs, Sci. Rep., 8, 1, 9548 (2018)
[362] Cooper, C.; Frieze, A.; Radzik, T., The cover times of random walks on hypergraphs, (International Colloquium on Structural Information and Communication Complexity (2011), Springer), 210-221
[363] Harush, U.; Barzel, B., Dynamic patterns of information flow in complex networks, Nature Commun., 8, 1, 2181 (2017)
[364] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237, 641, 37-72 (1952) · Zbl 1403.92034
[365] Arenas, A.; Díaz-Guilera, A.; Pérez, C. J.; Vega-Redondo, F., Self-organized criticality in evolutionary systems with local interaction, J. Econom. Dynam. Control, 26, 12, 2115-2142 (2002) · Zbl 1100.91507
[366] Colizza, V.; Pastor-Satorras, R.; Vespignani, A., Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 4, 276-282 (2007)
[367] Nakao, H.; Mikhailov, A. S., Turing patterns in network-organized activator-inhibitor systems, Nat. Phys., 6, 7, 544-550 (2010)
[368] Asllani, M.; Challenger, J. D.; Pavone, F. S.; Sacconi, L.; Fanelli, D., The theory of pattern formation on directed networks, Nature Commun., 5, 1, 1-9 (2014)
[369] Kouvaris, N. E.; Sebek, M.; Iribarne, A.; Díaz-Guilera, A.; Kiss, I. Z., Stationary patterns in star networks of bistable units: Theory and application to chemical reactions, Phys. Rev. E, 95, 4, 042203 (2017)
[370] Cencetti, G.; Clusella, P.; Fanelli, D., Pattern invariance for reaction-diffusion systems on complex networks, Sci. Rep., 8, 1, 1-9 (2018)
[371] Carletti, T.; Fanelli, D.; Nicoletti, S., Dynamical systems on hypergraphs. (2020), arXiv:2006.01243
[372] Huygens, C.; Oscillatorium, H., The pendulum clock, Trans. RJ Blackwell Iowa State Univ. Press Ames. (1986)
[373] Néda, Z.; Ravasz, E.; Brechet, Y.; Vicsek, T.; Barabási, A.-L., The sound of many hands clapping, Nature, 403, 6772, 849-850 (2000)
[374] Buck, J., Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol., 63, 3, 265-289 (1988)
[375] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C., The synchronization of chaotic systems, Phys. Rep., 366, 1, 1-101 (2002) · Zbl 0995.37022
[376] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12 (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1219.37002
[377] Strogatz, S. H., Sync: The Emerging Science of Spontaneous Order (2004), Penguin UK
[378] Boccaletti, S.; Pisarchik, A. N.; Del Genio, C. I.; Amann, A., Synchronization: From Coupled Systems to Complex Networks (2018), Cambridge University Press · Zbl 1380.90001
[379] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer-Verlag: Springer-Verlag Tokyo · Zbl 0558.76051
[380] Acebrón, J. A.; Bonilla, L. L.; Vicente, C. J.P.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 1, 137 (2005)
[381] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 3, 93-153 (2008)
[382] Rodrigues, F. A.; Peron, T. K.D. M.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089
[383] Barahona, M.; Pecora, L. M., Synchronization in small-world systems, Phys. Rev. Lett., 89, 5, 054101 (2002)
[384] Gómez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 12, 128701 (2011)
[385] Boccaletti, S.; Almendral, J.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1-94 (2016) · Zbl 1359.34048
[386] Nicosia, V.; Valencia, M.; Chavez, M.; Díaz-Guilera, A.; Latora, V., Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, 17, 174102 (2013)
[387] Pecora, L. M.; Sorrentino, F.; Hagerstrom, A. M.; Murphy, T. E.; Roy, R., Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Commun., 5, 1, 1-8 (2014)
[388] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, 174102 (2004)
[389] Bi, H.; Hu, X.; Boccaletti, S.; Wang, X.; Zou, Y.; Liu, Z.; Guan, S., Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett., 117, 20, 204101 (2016)
[390] Aguiar, M. A.; Dias, A. P., An overview of synchrony in coupled cell networks, (Modeling, Dynamics, Optimization and Bioeconomics III (2016), Springer), 25-48
[391] Nijholt, E.; Rink, B.; Sanders, J., Center manifolds of coupled cell networks, SIAM J. Math. Anal., 49, 5, 4117-4148 (2017) · Zbl 1379.37093
[392] Golubitsky, M.; Stewart, I., Nonlinear dynamics of networks: The groupoid formalism, Bull. Am. Math. Soc., 43, 3, 305-364 (2006) · Zbl 1119.37036
[393] Stewart, I.; Golubitsky, M.; Pivato, M., Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 4, 609-646 (2003) · Zbl 1089.34032
[394] Golubitsky, M.; Stewart, I.; Török, A., Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 1, 78-100 (2005) · Zbl 1090.34030
[395] Watanabe, S.; Strogatz, S. H., Integrability of a globally coupled oscillator array, Phys. Rev. Lett., 70, 16, 2391 (1993) · Zbl 1063.34505
[396] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Physica D, 74, 3-4, 197-253 (1994) · Zbl 0812.34043
[397] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, 037113 (2008) · Zbl 1309.34058
[398] Bick, C.; Goodfellow, M.; Laing, C. R.; Martens, E. A., Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 1, 1-43 (2020) · Zbl 1448.92011
[399] Vega, Y. M.; Vázquez-Prada, M.; Pacheco, A. F., Fitness for synchronization of network motifs, Physica A, 343, 279-287 (2004)
[400] D’Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I., Synchronization properties of network motifs: Influence of coupling delay and symmetry, Chaos, 18, 3, 037116 (2008) · Zbl 1309.34089
[401] Skardal, P. S.; Arenas, A., Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Phys. Rev. Lett., 122, 24, 248301 (2019)
[402] Xu, C.; Wang, X.; Skardal, P. S., Bifurcation analysis and structural stability of simplicial oscillator populations, Phys. Rev. Research, 2, 2, 023281 (2020)
[403] Tanaka, T.; Aoyagi, T., Multistable attractors in a network of phase oscillators with three-body interactions, Phys. Rev. Lett., 106, 22, 224101 (2011)
[404] Ashwin, P.; Rodrigues, A., Hopf normal form with S_N symmetry and reduction to systems of nonlinearly coupled phase oscillators, Physica D, 325, 14-24 (2016) · Zbl 1364.34041
[405] Komarov, M.; Pikovsky, A., Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling, Phys. Rev. E, 92, 2, 020901 (2015)
[406] Skardal, P. S.; Arenas, A., Higher-order interactions in complex networks of phase oscillators promote abrupt synchronization switching (2019), arXiv:1909.08057
[407] Pazó, D., Thermodynamic limit of the first-order phase transition in the Kuramoto model, Phys. Rev. E, 72, 4, 046211 (2005)
[408] Nicosia, V.; Skardal, P. S.; Arenas, A.; Latora, V., Collective phenomena emerging from the interactions between dynamical processes in multiplex networks, Phys. Rev. Lett., 118, 13, 138302 (2017)
[409] D’Souza, R. M.; Gómez-Gardeñes, J.; Nagler, J.; Arenas, A., Explosive phenomena in complex networks, Adv. Phys., 68, 3, 123-223 (2019)
[410] Berec, V., Chimera state and route to explosive synchronization, Chaos, 86, 75-81 (2016) · Zbl 1355.34063
[411] Berec, V., Explosive synchronization in clustered scale-free networks: Revealing the existence of chimera state, Eur. Phys. J. Spec. Top., 225, 1, 7-15 (2016)
[412] Kuehn, C.; Bick, C., A universal route to explosive phenomena (2020), arXiv:2002.10714
[413] Stankovski, T.; Ticcinelli, V.; McClintock, P. V.; Stefanovska, A., Coupling functions in networks of oscillators, New J. Phys., 17, 3, 035002 (2015) · Zbl 1452.34045
[414] León, I.; Pazó, D., Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation, Phys. Rev. E, 100, 1, 012211 (2019)
[415] Millán, A. P.; Torres, J. J.; Bianconi, G., Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 218301 (2020)
[416] Millán, A. P.; Torres, J. J.; Bianconi, G., Complex network geometry and frustrated synchronization, Sci. Rep., 8, 1, 9910 (2018)
[417] Gong, C. C.; Pikovsky, A., Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles, Phys. Rev. E, 100, 6, 062210 (2019)
[418] Rosenblum, M.; Pikovsky, A., Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling, Phys. Rev. Lett., 98, 6, 064101 (2007)
[419] Pikovsky, A.; Rosenblum, M., Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators, Physica D, 238, 1, 27-37 (2009) · Zbl 1153.37403
[420] Burylko, O.; Pikovsky, A., Desynchronization transitions in nonlinearly coupled phase oscillators, Physica D, 240, 17, 1352-1361 (2011) · Zbl 1235.34111
[421] Nakao, H., Phase reduction approach to synchronisation of nonlinear oscillators, Contemp. Phys., 57, 2, 188-214 (2016)
[422] Pietras, B.; Daffertshofer, A., Network dynamics of coupled oscillators and phase reduction techniques, Phys. Rep. (2019)
[423] Ashwin, P.; Bick, C.; Burylko, O., Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling, Front. Appl. Math. Stat., 2, 7 (2016)
[424] Matheny, M. H.; Emenheiser, J.; Fon, W.; Chapman, A.; Salova, A.; Rohden, M.; Li, J.; de Badyn, M. H.; Pósfai, M.; Duenas-Osorio, L., Exotic states in a simple network of nanoelectromechanical oscillators, Science, 363, 6431, eaav7932 (2019)
[425] Bick, C.; Ashwin, P.; Rodrigues, A., Chaos in generically coupled phase oscillator networks with nonpairwise interactions, Chaos, 26, 9, 094814 (2016) · Zbl 1382.34038
[426] Bick, C., Heteroclinic switching between chimeras, Phys. Rev. E, 97, 5, 050201 (2018)
[427] Bick, C., Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small populations, J. Nonlin. Sci. (2019) · Zbl 1431.34045
[428] Bick, C.; Lohse, A., Heteroclinic dynamics of localized frequency synchrony: Stability of heteroclinic cycles and networks, J. Nonlin. Sci. (2019) · Zbl 1431.34046
[429] Bick, C.; Timme, M.; Paulikat, D.; Rathlev, D.; Ashwin, P., Chaos in symmetric phase oscillator networks, Phys. Rev. Lett., 107, 24, 244101 (2011)
[430] Komarov, M.; Pikovsky, A., Dynamics of multifrequency oscillator communities, Phys. Rev. Lett., 110, 13, 134101 (2013)
[431] Rosenblum, M.; Pikovsky, A., Numerical phase reduction beyond the first order approximation, Chaos, 29, 1, 011105 (2019) · Zbl 1406.34076
[432] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821 (1990) · Zbl 0938.37019
[433] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 11, 1804 (1996)
[434] Wu, C. W., Synchronization in arrays of chaotic circuits coupled via hypergraphs: static and dynamic coupling, (ISCAS’98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No. 98CH36187), vol. 3 (1998), IEEE), 287-290
[435] Krawiecki, A., Chaotic synchronization on complex hypergraphs, Chaos Solitons Fractals, 65, 44-50 (2014) · Zbl 1348.34089
[436] Gambuzza, L.; Di Patti, F.; Gallo, L.; Lepri, S.; Romance, M.; Criado, R.; Frasca, M.; Latora, V.; Boccaletti, S., The master stability function for synchronization in simplicial complexes (2020), arXiv:2004.03913
[437] Lodato, I.; Boccaletti, S.; Latora, V., Synchronization properties of network motifs, Europhys. Lett., 78, 2, 28001 (2007)
[438] Soriano, M. C.; Van der Sande, G.; Fischer, I.; Mirasso, C. R., Synchronization in simple network motifs with negligible correlation and mutual information measures, Phys. Rev. Lett., 108, 13, 134101 (2012)
[439] Krishnagopal, S.; Lehnert, J.; Poel, W.; Zakharova, A.; Schöll, E., Synchronization patterns: From network motifs to hierarchical networks, Phil. Trans. R. Soc. A, 375, 2088, 20160216 (2017) · Zbl 1404.34041
[440] Amritkar, R.; Jalan, S.; Hu, C.-K., Synchronized clusters in coupled map networks. II. Stability analysis, Phys. Rev. E, 72, 1, 016212 (2005)
[441] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 10, 2109 (1998)
[442] Englert, A.; Heiligenthal, S.; Kinzel, W.; Kanter, I., Synchronization of chaotic networks with time-delayed couplings: an analytic study, Phys. Rev. E, 83, 4, 046222 (2011)
[443] Sorrentino, F.; Ott, E., Network synchronization of groups, Phys. Rev. E, 76, 5, 056114 (2007)
[444] Koseska, A.; Volkov, E.; Kurths, J., Oscillation quenching mechanisms: amplitude vs. oscillation death, Phys. Rep., 531, 4, 173-199 (2013) · Zbl 1356.34043
[445] Mulas, R.; Kuehn, C.; Jost, J., Coupled dynamics on hypergraphs: master stability of steady states and synchronization (2020), arXiv:2003.13775
[446] Dayan, P.; Abbott, L. F.; Abbott, L., Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (2001), MIT press Cambridge, MA · Zbl 1051.92010
[447] Gerstner, W.; Kistler, W. M., Spiking Neuron Models: Single Neurons, Populations, Plasticity (2002), Cambridge University Press · Zbl 1100.92501
[448] Bian, Q.; Yao, H., Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling, Commun. Nonlinear Sci. Numer. Simul., 16, 10, 4089-4098 (2011) · Zbl 1219.93051
[449] Shilnikov, A.; Gordon, R.; Belykh, I., Polyrhythmic synchronization in bursting networking motifs, Chaos, 18, 3, 037120 (2008)
[450] Matias, F. S.; Carelli, P. V.; Mirasso, C. R.; Copelli, M., Anticipated synchronization in a biologically plausible model of neuronal motifs, Phys. Rev. E, 84, 2, 021922 (2011)
[451] Gollo, L. L.; Mirasso, C.; Sporns, O.; Breakspear, M., Mechanisms of zero-lag synchronization in cortical motifs, PLOS Comput. Biol., 10, 4, Article e1003548 pp. (2014)
[452] Wojcik, J.; Schwabedal, J.; Clewley, R.; Shilnikov, A. L., Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PloS one, 9, 4 (2014)
[453] Collens, J.; Pusiluri, K.; Kelly, A.; Knapper, D.; Xing, T.; Basodi, D.; Shilnikov, A., Dynamics and bifurcations in multistable 3-cell neural networks (2020), arXiv:2005.04278
[454] Smirnov, D. A.; Andrzejak, R. G., Detection of weak directional coupling: phase-dynamics approach versus state-space approach, Phys. Rev. E, 71, 3, 036207 (2005)
[455] Frenzel, S.; Pompe, B., Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett., 99, 20, 204101 (2007)
[456] Rosenblum, M. G.; Pikovsky, A. S., Detecting direction of coupling in interacting oscillators, Phys. Rev. E, 64, 4, 045202 (2001)
[457] Kralemann, B.; Pikovsky, A.; Rosenblum, M., Reconstructing phase dynamics of oscillator networks, Chaos, 21, 2, 025104 (2011) · Zbl 1317.34057
[458] Kralemann, B.; Pikovsky, A.; Rosenblum, M., Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys., 16, 8, 085013 (2014)
[459] Kralemann, B.; Cimponeriu, L.; Rosenblum, M.; Pikovsky, A.; Mrowka, R., Phase dynamics of coupled oscillators reconstructed from data, Phys. Rev. E, 77, 6, 066205 (2008)
[460] Tass, P.; Rosenblum, M. G.; Weule, J.; Kurths, J.; Pikovsky, A.; Volkmann, J.; Schnitzler, A.; Freund, H.-J., Detection of n:m phase locking from noisy data: application to magnetoencephalography, Phys. Rev. Lett., 81, 15, 3291-3294 (1998)
[461] Kralemann, B.; Pikovsky, A.; Rosenblum, M., Detecting triplet locking by triplet synchronization indices, Phys. Rev. E, 87, 5, 052904 (2013)
[462] Jia, J.; Song, Z.; Liu, W.; Kurths, J.; Xiao, J., Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep., 5, 17008 (2015)
[463] Duggento, A.; Stankovski, T.; McClintock, P. V.; Stefanovska, A., Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators, Phys. Rev. E, 86, 6, 061126 (2012)
[464] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 14, 3200 (2001)
[465] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2011), Princeton University Press · Zbl 1279.92038
[466] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 3, 925 (2015)
[467] de Arruda, G. F.; Rodrigues, F. A.; Moreno, Y., Fundamentals of spreading processes in single and multilayer complex networks, Phys. Rep., 756, 1-59 (2018) · Zbl 1405.90041
[468] Goffman, W.; Newill, V. A., Generalization of epidemic theory: An application to the transmission of ideas, Nature, 204, 4955, 225-228 (1964)
[469] Centola, D., How behavior spreads: The science of complex contagions, vol. 3 (2018), Princeton University Press
[470] Nowak, A.; Szamrej, J.; Latané, B., From private attitude to public opinion: A dynamic theory of social impact., Psychol. Rev., 97, 3, 362 (1990)
[471] Axelrod, R., The complexity of cooperation: Agent-based models of competition and collaboration, vol. 3 (1997), Princeton University Press
[472] Sen, P.; Chakrabarti, B. K., Sociophysics: An Introduction (2014), Oxford University Press
[473] Castellano, C.; Fortunato, S.; Loreto, V., Statistical physics of social dynamics, Rev. Modern Phys., 81, 2, 591 (2009)
[474] Baronchelli, A., The emergence of consensus: A primer, R. Soc. Open Sci., 5, 2, 172189 (2018)
[475] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115, 772, 700-721 (1927) · JFM 53.0517.01
[476] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1992), Oxford University Press
[477] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[478] Hufnagel, L.; Brockmann, D.; Geisel, T., Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101, 42, 15124-15129 (2004)
[479] Colizza, V.; Barrat, A.; Barthélemy, M.; Vespignani, A., The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA, 103, 7, 2015-2020 (2006) · Zbl 1296.92225
[480] Zhang, Q.; Sun, K.; Chinazzi, M.; y Piontti, A. P.; Dean, N. E.; Rojas, D. P.; Merler, S.; Mistry, D.; Poletti, P.; Rossi, L., Spread of zika virus in the americas, Proc. Natl. Acad. Sci. USA, 114, 22, E4334-E4343 (2017)
[481] y Piontti, A. P.; Perra, N.; Rossi, L.; Samay, N.; Vespignani, A., Charting the next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age (2018), Springer
[482] Viboud, C.; Vespignani, A., The future of influenza forecasts, Proc. Natl. Acad. Sci. USA, 116, 8, 2802-2804 (2019)
[483] Kucharski, A. J.; Russell, T. W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R. M.; Sun, F.; Jit, M.; Munday, J. D., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis. (2020)
[484] Kraemer, M. U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D. M.; du Plessis, L.; Faria, N. R.; Li, R.; Hanage, W. P.; Brownstein, J. S.; Layan, M.; Vespignani, A.; Tian, H.; Dye, C.; Pybus, O. G.; Scarpino, S. V., The effect of human mobility and control measures on the COVID-19 epidemic in China, Science (2020)
[485] Vazquez, A.; Rácz, B.; Lukács, A.; Barabási, A.-L., Impact of non-Poissonian activity patterns on spreading processes, Phys. Rev. Lett., 98, 15, 158702 (2007)
[486] Bansal, S.; Read, J.; Pourbohloul, B.; Meyers, L. A., The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn., 4, 5, 478-489 (2010) · Zbl 1342.92225
[487] Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.; Barabási, A.-L.; Saramäki, J., Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 83, 2, 025102 (2011)
[488] Rocha, L. E.; Liljeros, F.; Holme, P., Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLOS Comput. Biol., 7, 3 (2011)
[489] Wang, W.; Liu, Q.-H.; Liang, J.; Hu, Y.; Zhou, T., Coevolution spreading in complex networks, Phys. Rep. (2019)
[490] Gleeson, J. P., High-accuracy approximation of binary-state dynamics on networks, Phys. Rev. Lett., 107, 6, 068701 (2011)
[491] Gleeson, J. P., Binary-state dynamics on complex networks: pair approximation and beyond, Phys. Rev. X, 3, 2, 021004 (2013)
[492] Cozzo, E.; Banos, R. A.; Meloni, S.; Moreno, Y., Contact-based social contagion in multiplex networks, Phys. Rev. E, 88, 5, 050801 (2013)
[493] Wang, W.; Tang, M.; Stanley, H. E.; Braunstein, L. A., Unification of theoretical approaches for epidemic spreading on complex networks, Rep. Progr. Phys., 80, 3, 036603 (2017)
[494] Kiss, I. Z.; Miller, J. C.; Simon, P. L., Mathematics of Epidemics on Networks (2017), Cham Springer · Zbl 1373.92001
[495] Daley, D. J.; Kendall, D. G., Epidemics and rumours, Nature, 204, 4963 (1964), 1118-1118
[496] Bass, F. M., A new product growth for model consumer durables, Manag. Sci., 15, 5, 215-227 (1969) · Zbl 1231.91323
[497] Bikhchandani, S.; Hirshleifer, D.; Welch, I., A theory of fads, fashion, custom, and cultural change as informational cascades, J. Polit. Econ., 100, 5, 992-1026 (1992)
[498] Moreno, Y.; Nekovee, M.; Pacheco, A. F., Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69, 6, 066130 (2004)
[499] Rogers, E. M., Diffusion of Innovations (2010), Simon and Schuster
[500] Centola, D.; Macy, M., Complex contagions and the weakness of long ties, Am. J. Sociol., 113, 3, 702-734 (2007)
[501] Guilbeault, D.; Becker, J.; Centola, D., Complex contagions: a decade in review, (Complex Spreading Phenomena in Social Systems (2018), Springer), 3-25
[502] Kee, K. F.; Sparks, L.; Struppa, D. C.; Mannucci, M., Social groups, social media, and higher dimensional social structures: a simplicial model of social aggregation for computational communication research, Commun. Q., 61, 1, 35-58 (2013)
[503] SocioPatterns Collaboration, http://www.sociopatterns.org/.
[504] Cisneros-Velarde, P.; Bullo, F., Multi-group SIS epidemics with simplicial and higher-order interactions (2020), arXiv:2005.11404
[505] Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y., Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys. Lett., 89, 3, 38009 (2010)
[506] Matamalas, J. T.; Arenas, A.; Gómez, S., Effective approach to epidemic containment using link equations in complex networks, Sci. Adv., 4, 12, eaau4212 (2018)
[507] Matamalas, J. T.; Gómez, S.; Arenas, A., Abrupt phase transition of epidemic spreading in simplicial complexes, Phys. Rev. Research, 2, 1, 012049 (2020)
[508] Newman, M. E.J.; Park, J., Why social networks are different from other types of networks, Phys. Rev. E, 68, 3, 036122 (2003)
[509] Miller, J. C., Spread of infectious disease through clustered populations, J. R. Soc. Interface, 6, 41, 1121-1134 (2009)
[510] Ritchie, M.; Berthouze, L.; House, T.; Kiss, I. Z., Higher-order structure and epidemic dynamics in clustered networks, J. Theoret. Biol., 348, 21-32 (2014) · Zbl 1412.92297
[511] O’Sullivan, D. J.; O’Keeffe, G. J.; Fennell, P. G.; Gleeson, J. P., Mathematical modeling of complex contagion on clustered networks, Front. Phys., 3, 71 (2015)
[512] Hébert-Dufresne, L.; Althouse, B. M., Complex dynamics of synergistic coinfections on realistically clustered networks, Proc. Natl. Acad. Sci. USA, 112, 33, 10551-10556 (2015) · Zbl 1355.92112
[513] St-Onge, G.; Thibeault, V.; Allard, A.; Dubé, L. J.; Hébert-Dufresne, L., Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks (2020), arXiv:2004.10203
[514] Hébert-Dufresne, L.; Mistry, D.; Althouse, B. M., Spread of infectious disease and social awareness as parasitic contagions on clustered networks (2020), arXiv:2003.10604
[515] Yang, G.-Y.; Hu, Z.-L.; Liu, J.-G., Knowledge diffusion in the collaboration hypernetwork, Physica A, 419, 429-436 (2015)
[516] Wang, J.-P.; Guo, Q.; Yang, G.-Y.; Liu, J.-G., Improved knowledge diffusion model based on the collaboration hypernetwork, Physica A, 428, 250-256 (2015)
[517] Peng, G.; Wang, H.; Zhang, H.; Huang, K., A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge, Adv. Eng. Softw., 42, 100956 (2019)
[518] Bodó, Á.; Katona, G. Y.; Simon, P. L., SIS epidemic propagation on hypergraphs, Bull. Math. Biol., 78, 4, 713-735 (2016) · Zbl 1339.05270
[519] Ghoshal, G.; Sander, L.; Sokolov, I., SIS Epidemics with household structure: the self-consistent field method, Math. Biol., 190, 1, 71-85 (2004) · Zbl 1048.92029
[520] House, T.; Keeling, M. J., Deterministic epidemic models with explicit household structure, Math. Biosci., 213, 1, 29-39 (2008) · Zbl 1135.92029
[521] Ball, F.; Britton, T.; House, T.; Isham, V.; Mollison, D.; Pellis, L.; Tomba, G. S., Seven challenges for metapopulation models of epidemics, including households models, Epidemics, 10, 63-67 (2015)
[522] Granovetter, M., Threshold models of collective behavior, Am. J. Sociol., 83, 6, 1420-1443 (1978)
[523] Karsai, M.; Iniguez, G.; Kaski, K.; Kertész, J., Complex contagion process in spreading of online innovation, J. R. Soc. Interface, 11, 101, 20140694 (2014)
[524] Suo, Q.; Guo, J.-L.; Shen, A.-Z., Information spreading dynamics in hypernetworks, Phys. A, 495, 475-487 (2018) · Zbl 1514.91155
[525] Jhun, B.; Jo, M.; Kahng, B., Simplicial SIS model in scale-free uniform hypergraph, J. Stat. Mech. Theory Exp., 2019, 12, 123207 (2019) · Zbl 1459.82363
[526] Lübeck, S., Universal scaling behavior of non-equilibrium phase transitions, Internat. J. Modern Phys. B, 18, 31n32, 3977-4118 (2004) · Zbl 1111.82040
[527] Ferreira, S. C.; Castellano, C.; Pastor-Satorras, R., Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results, Phys. Rev. E, 86, 4, 041125 (2012)
[528] de Arruda, G. F.; Tizzani, M.; Moreno, Y., Phase transitions and stability of dynamical processes on hypergraphs (2020), arXiv:2005.10891
[529] Dahlerup, D., From a small to a large minority: Women in scandinavian politics, Scand Polit. Stud., 11, 4, 275-298 (1988)
[530] Grey, S., Numbers and beyond: the relevance of critical mass in gender research, Polit. Gend., 2, 4, 492-502 (2006)
[531] Centola, D.; Becker, J.; Brackbill, D.; Baronchelli, A., Experimental evidence for tipping points in social convention, Science, 360, 6393, 1116-1119 (2018)
[532] Ma, T.; Guo, J., Study on information transmission model of enterprise informal organizations based on the hypernetwork, Chin. J. Phys., 56, 5, 2424-2438 (2018)
[533] Dietz, K., Epidemics and rumours: a survey, J. R. Stat. Soc., 130, 4, 505-528 (1967)
[534] Galam, S., Sociophysics: a review of galam models, Internat. J. Modern Phys. C, 19, 03, 409-440 (2008) · Zbl 1141.91668
[535] Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabási, A.-L.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M., Computational social science, Science, 323, 5915, 721-723 (2009)
[536] Galam, S., What is sociophysics about?, (Sociophysics (2012), Springer), 3-19
[537] Conte, R.; Gilbert, N.; Bonelli, G.; Cioffi-Revilla, C.; Deffuant, G.; Kertesz, J.; Loreto, V.; Moat, S.; Nadal, J.-P.; Sanchez, A., Manifesto of computational social science, Eur. Phys. J. Spec. Top., 214, 1, 325-346 (2012)
[538] Liggett, T. M., Interacting Particle Systems, vol. 276 (2012), Springer Science & Business Media
[539] Shao, J.; Havlin, S.; Stanley, H., Dynamic opinion model and invasion percolation, Phys. Rev. Lett., 103, 1, 018701 (2009)
[540] Suchecki, K.; Eguíluz, V. M.; San Miguel, M., Conservation laws for the voter model in complex networks, Europhys. Lett., 69, 2, 228 (2004)
[541] Suchecki, K.; Eguíluz, V. M.; San Miguel, M., Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. E, 72, 3, 036132 (2005)
[542] Diakonova, M.; Nicosia, V.; Latora, V.; San Miguel, M., Irreducibility of multilayer network dynamics: The case of the voter model, New J. Phys., 18, 2, 023010 (2016)
[543] Fernández-Gracia, J.; Suchecki, K.; Ramasco, J. J.; San Miguel, M.; Eguíluz, V. M., Is the voter model a model for voters?, Phys. Rev. Lett., 112, 15, 158701 (2014)
[544] Kearns, M.; Suri, S.; Montfort, N., An experimental study of the coloring problem on human subject networks, Science, 313, 5788, 824-827 (2006)
[545] Judd, S.; Kearns, M.; Vorobeychik, Y., Behavioral dynamics and influence in networked coloring and consensus, Proc. Natl. Acad. Sci. USA, 107, 34, 14978-14982 (2010)
[546] Chung, F.; Tsiatas, A., Hypergraph coloring games and voter models, Internet Math., 10, 1-2, 66-86 (2014) · Zbl 1461.05140
[547] Redner, S., Reality-inspired voter models: A mini-review, C. R. Phys. (2019)
[548] Vazquez, F.; Eguíluz, V. M.; San Miguel, M., Generic absorbing transition in coevolution dynamics, Phys. Rev. Lett., 100, 10, 108702 (2008)
[549] Horstmeyer, L.; Kuehn, C., Adaptive voter model on simplicial complexes, Phys. Rev. E, 101, 2, 022305 (2020)
[550] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 4, 403-406 (2002)
[551] Watts, D. J., A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99, 9, 5766-5771 (2002) · Zbl 1022.90001
[552] Lanchier, N.; Neufer, J., Stochastic dynamics on hypergraphs and the spatial majority rule model, J. Stat. Phys., 151, 1-2, 21-45 (2013) · Zbl 1269.82043
[553] de Oliveira, M. J., Isotropic majority-vote model on a square lattice, J. Stat. Phys., 66, 1-2, 273-281 (1992) · Zbl 0925.82179
[554] Pereira, L. F.; Moreira, F., Majority-vote model on random graphs, Phys. Rev. E, 71, 1, 016123 (2005)
[555] Latora, V.; Marchiori, M., Efficient behavior of small-world networks, Phys. Rev. Lett., 87, 19, 198701 (2001)
[556] Campos, P. R.; de Oliveira, V. M.; Moreira, F., Small-world effects in the majority-vote model, Phys. Rev. E, 67, 2, 026104 (2003)
[557] Luz, E. M.; Lima, F., Majority-vote on directed small-world networks, Internat. J. Modern Phys. C, 18, 08, 1251-1261 (2007) · Zbl 1200.91268
[558] Lima, F., Majority-vote on directed Barabasi-Albert networks, Internat. J. Modern Phys. C, 17, 09, 1257-1265 (2006) · Zbl 1121.82376
[559] Lima, F., Majority-vote on undirected Barabási-Albert networks, Commun. Comput. Phys., 2, 2, 358-366 (2007)
[560] Gradowski, T.; Krawiecki, A., Majority-vote model on scale-free hypergraphs, Acta. Phys. Polon., 127, 3A, 1-4 (2015)
[561] Hong, H.; Ha, M.; Park, H., Finite-size scaling in complex networks, Phys. Rev. Lett., 98, 25, 258701 (2007)
[562] Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G., Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 01n04, 87-98 (2000)
[563] Lorenz, J., Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18, 12, 1819-1838 (2007) · Zbl 1151.91076
[564] Asch, S. E.; Guetzkow, H., Effects of group pressure upon the modification and distortion of judgments, Doc. Gestalt Psychol., 222-236 (1951)
[565] Axelrod, R., The dissemination of culture: a model with local convergence and global polarization, J.Confl.Resolut., 41, 2, 203-226 (1997)
[566] Castellano, C.; Marsili, M.; Vespignani, A., Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett., 85, 16, 3536 (2000)
[567] Klemm, K.; Eguíluz, V. M.; Toral, R.; San Miguel, M., Nonequilibrium transitions in complex networks: A model of social interaction, Phys. Rev. E, 67, 2, 026120 (2003)
[568] Klemm, K.; Eguíluz, V. M.; Toral, R.; San Miguel, M., Global culture: A noise-induced transition in finite systems, Phys. Rev. E, 67, 4, 045101 (2003)
[569] Battiston, F.; Nicosia, V.; Latora, V.; San Miguel, M., Layered social influence promotes multiculturality in the Axelrod model, Sci. Rep., 7, 1, 1809 (2017)
[570] Maletić, S.; Rajković, M., Consensus formation on a simplicial complex of opinions, Phys. A, 397, 111-120 (2014) · Zbl 1402.91604
[571] Maletić, S.; Zhao, Y., Hidden multidimensional social structure modeling applied to biased social perception, Phys. A, 492, 1419-1430 (2018)
[572] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 4, 208-249 (2009)
[573] Szabó, G.; Szolnoki, A.; Izsák, R., Rock-scissors-paper game on regular small-world networks, J. Phys. Math. Gen., 37, 7, 2599 (2004) · Zbl 1055.82021
[574] Szolnoki, A.; Mobilia, M.; Jiang, L.-L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, 100, 20140735 (2014)
[575] Axelrod, R., The evolution of cooperation, (Basic Books (1984), Basic Books)
[576] Rapoport, A.; Guyer, M., A taxonomy of 2 x 2 games, by anatol rapoport and melvin guyer, (Bobbs-Merrill Reprint Series in the Social Sciences, S617 (1966))
[577] Rousseau, J.-J., The discourses and other political writings, Volume 1 of Cambridge Texts in the History of Political Thought, , edited by Victor Gourevitch (1997), Cambridge University Press
[578] Luce, R.; Raiffa, H., Games and Decisions: Introduction and Critical Survey, 2012 Ed (1957), Dover Publications, Mineola, NY · Zbl 0084.15704
[579] Gui, B.; Sugden, R., Economics and Social Interaction: Accounting for Interpersonal Relations (2005), Cambridge University Press
[580] Smith, J. M., Evolution and the Theory of Games (1982), Cambridge University Press · Zbl 0526.90102
[581] Smith, J. M.; Parker, G. A., The logic of asymmetric contests, Anim. Behav., 24, 1, 159-175 (1976)
[582] Cressman, R., Evolutionary stability for two-stage Hawk-Dove games, Rocky Mountain J. Math., 145-155 (1995) · Zbl 0831.90128
[583] Smith, J., Game theory and the evolution of fighting, Evol., 8-28 (1972)
[584] Diederich, S.; Opper, M., Replicators with random interactions: A solvable model, Phys. Rev. A, 39, 8, 4333 (1989)
[585] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press · Zbl 0914.90287
[586] Opper, M.; Diederich, S., Replicator dynamics, Comput. Phys. Comm., 121, 141-144 (1999)
[587] Chawanya, T.; Tokita, K., Large-dimensional replicator equations with antisymmetric random interactions, J. Phys. Soc. Japan, 71, 2, 429-431 (2002)
[588] Perc, M.; Szolnoki, A., Coevolutionary games—a mini review, BioSystems, 99, 2, 109-125 (2010)
[589] Hardin, G., The tragedy of the commons, Science, 162, 3859, 1243-1248 (1968)
[590] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 6398, 826-829 (1992)
[591] Santos, F. C.; Pacheco, J. M., Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95, 9, 098104 (2005)
[592] Gómez-Gardeñes, J.; Campillo, M.; Floría, L.; Moreno, Y., Dynamical organization of cooperation in complex topologies, Phys. Rev. Lett., 98, 10, 108103 (2007)
[593] Assenza, S.; Gómez-Gardeñes, J.; Latora, V., Enhancement of cooperation in highly clustered scale-free networks, Phys. Rev. E, 78, 1, 017101 (2008)
[594] Cassar, A., Coordination and cooperation in local, random and small world networks: experimental evidence, Games Econom. Behav., 58, 2, 209-230 (2007) · Zbl 1168.91329
[595] Kirchkamp, O.; Nagel, R., Naive learning and cooperation in network experiments, Games Econom. Behav., 58, 2, 269-292 (2007) · Zbl 1168.91309
[596] Grujić, J.; Fosco, C.; Araujo, L.; Cuesta, J. A.; Sánchez, A., Social experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma, PLOS One, 5, 11 (2010)
[597] Traulsen, A.; Semmann, D.; Sommerfeld, R. D.; Krambeck, H.-J.; Milinski, M., Human strategy updating in evolutionary games, Proc. Natl. Acad. Sci. USA, 107, 7, 2962-2966 (2010)
[598] Gracia-Lázaro, C.; Ferrer, A.; Ruiz, G.; Tarancón, A.; Cuesta, J. A.; Sánchez, A.; Moreno, Y., Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma, Proc. Natl. Acad. Sci. USA, 109, 32, 12922-12926 (2012)
[599] Grujić, J.; Gracia-Lázaro, C.; Milinski, M.; Semmann, D.; Traulsen, A.; Cuesta, J. A.; Moreno, Y.; Sánchez, A., A comparative analysis of spatial prisoner’s dilemma experiments: conditional cooperation and payoff irrelevance, Sci. Rep., 4, 4615 (2014)
[600] Rand, D. G.; Nowak, M. A.; Fowler, J. H.; Christakis, N. A., Static network structure can stabilize human cooperation, Proc. Natl. Acad. Sci. USA, 111, 48, 17093-17098 (2014)
[601] Sánchez, A., Physics of human cooperation: experimental evidence and theoretical models, J. Stat. Mech. Theory Exp., 2018, 2, 024001 (2018)
[602] Hauert, C.; Doebeli, M., Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 6983, 643-646 (2004)
[603] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 5805, 1560-1563 (2006)
[604] Szabó, G.; Fath, G., Evolutionary games on graphs, Phys. Rep., 446, 4-6, 97-216 (2007)
[605] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 5, 124 (2015)
[606] Sigmund, K., The Calculus of Selfishness, vol. 6 (2010), Princeton University Press · Zbl 1189.91010
[607] Archetti, M.; Scheuring, I., Review: evolution of cooperation in one-shot social dilemmas without assortment, J. Theoret. Biol., 299, 9-20 (2012) · Zbl 1337.91041
[608] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: A review, J. R. Soc. Interface, 10, 80, 20120997 (2013)
[609] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rev., 687, 1-51 (2017) · Zbl 1366.80006
[610] Peña, J.; Wu, B.; Arranz, J.; Traulsen, A., Evolutionary games of multiplayer cooperation on graphs, PLOS Comput. Biol., 12, 8 (2016)
[611] Szabó, G.; Hauert, C., Phase transitions and volunteering in spatial public goods games, Phys. Rev. Lett., 89, 11, 118101 (2002)
[612] Brandt, H.; Hauert, C.; Sigmund, K., Punishment and reputation in spatial public goods games, Proc. R. Soc. London B, 270, 1519, 1099-1104 (2003)
[613] Santos, F. C.; Santos, M. D.; Pacheco, J. M., Social diversity promotes the emergence of cooperation in public goods games, Nature, 454, 7201, 213-216 (2008)
[614] Rong, Z.; Wu, Z.-X., Effect of the degree correlation in public goods game on scale-free networks, Europhys. Lett., 87, 3, 30001 (2009)
[615] Rong, Z.; Yang, H.-X.; Wang, W.-X., Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks, Phys. Rev. E, 82, 4, 047101 (2010)
[616] Gao, J.; Li, Z.; Wu, T.; Wang, L., Diversity of contribution promotes cooperation in public goods games, Phys. A, 389, 16, 3166-3171 (2010)
[617] Vukov, J.; Santos, F. C.; Pacheco, J. M., Escaping the tragedy of the commons via directed investments, J. Theoret. Biol., 287, 37-41 (2011) · Zbl 1397.91081
[618] Szolnoki, A.; Perc, M., Group-size effects on the evolution of cooperation in the spatial public goods game, Phys. Rev. E, 84, 4, 047102 (2011)
[619] Perc, M.; Grigolini, P., Collective behavior and evolutionary games – an introduction, Chaos Solitons Fractals, 56, 1-5 (2013), Collective Behavior and Evolutionary Games · Zbl 1351.00028
[620] Szolnoki, A.; Perc, M.; Szabó, G., Topology-independent impact of noise on cooperation in spatial public goods games, Phys. Rev. E, 80, 056109 (2009)
[621] Szolnoki, A.; Perc, M., Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies, Phys. Rev. X, 3, 041021 (2013)
[622] Helbing, D.; Szolnoki, A.; Perc, M.; Szabó, G., Evolutionary establishment of moral and double moral standards through spatial interactions, PLOS Comput. Biol., 6, Article e1000758 pp. (2010)
[623] Wang, Z.; Szolnoki, A.; Perc, M., Evolution of public cooperation on interdependent networks: the impact of biased utility functions, Europhys. Lett., 97, 4, 48001 (2012)
[624] Wang, Z.; Szolnoki, A.; Perc, M., Interdependent network reciprocity in evolutionary games, Sci. Rep., 3, 1183 (2013)
[625] Battiston, F.; Nicosia, V.; Latora, V., Structural measures for multiplex networks, Phys. Rev. E, 89, 3, 032804 (2014)
[626] Battiston, F.; Perc, M.; Latora, V., Determinants of public cooperation in multiplex networks, New J. Phys., 19, 7, 073017 (2017)
[627] Roca, C. P.; Helbing, D., Emergence of social cohesion in a model society of greedy, mobile individuals, Proc. Natl. Acad. Sci. USA, 108, 28, 11370-11374 (2011)
[628] Pichler, E.; Shapiro, A. M., Public goods games on adaptive coevolutionary networks, Chaos, 27, 7, 073107 (2017)
[629] Ren, G.; Liu, L.; Feng, M.; He, Y., Coevolution of public goods game and networks based on survival of the fittest, PLOS One, 13, 9 (2018)
[630] Shen, C.; Chu, C.; Shi, L.; Jusup, M.; Perc, M.; Wang, Z., Coevolutionary resolution of the public goods dilemma in interdependent structured populations, Europhys. Lett., 124, 4, 48003 (2018)
[631] Perc, M., Stability of subsystem solutions in agent-based models, Eur. J. Phys., 39, 014001 (2018)
[632] Javarone, M. A.; Battiston, F., The role of noise in the spatial public goods game, J. Stat. Mech. Theory Exp., 2016, 7, 073404 (2016)
[633] Zheng, D.-F.; Yin, H.; Chan, C.-H.; Hui, P., Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions, Europhys. Lett., 80, 1, 18002 (2007)
[634] Santos, M. D.; Pinheiro, F. L.; Santos, F. C.; Pacheco, J. M., Dynamics of N-Person snowdrift games in structured populations, J. Theoret. Biol., 315, 81-86 (2012) · Zbl 1397.91077
[635] Ji, K. H.; Kim, J.-I.; Jung, H. Y.; Park, S. Y.; Choi, R.; Kim, U. K.; Hwang, C. S.; Lee, D.; Hwang, H.; Jeong, J. K., Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors, Appl. Phys. Lett., 98, 10, 103509 (2011)
[636] Pacheco, J. M.; Santos, F. C.; Souza, M. O.; Skyrms, B., Evolutionary dynamics of collective action in N-Person stag hunt dilemmas, Proc. R. Soc. B Biol. Sci., 276, 1655, 315-321 (2009)
[637] Souza, M. O.; Pacheco, J. M.; Santos, F. C., Evolution of cooperation under N-Person snowdrift games, J. Theoret. Biol., 260, 4, 581-588 (2009) · Zbl 1402.91061
[638] Santos, F. C.; Pacheco, J. M., Risk of collective failure provides an escape from the tragedy of the commons, Proc. Natl. Acad. Sci. USA, 108, 26, 10421-10425 (2011)
[639] Chen, W.; Gracia-Lázaro, C.; Li, Z.; Wang, L.; Moreno, Y., Evolutionary dynamics of N-Person Hawk-Dove games, Sci. Rep., 7, 1, 1-10 (2017)
[640] Güth, W.; Schmittberger, R.; Schwarze, B., An experimental analysis of ultimatum bargaining, J. Econ. Behav. Organiz., 3, 4, 367-388 (1982)
[641] Sinatra, R.; Iranzo, J.; Gomez-Gardeñes, J.; Floria, L. M.; Latora, V.; Moreno, Y., The ultimatum game in complex networks, J. Stat. Mech. Theory Exp., 2009, 09, P09012 (2009)
[642] Santos, F. P.; Santos, F. C.; Paiva, A.; Pacheco, J. M., Evolutionary dynamics of group fairness, J. Theoret. Biol., 378, 96-102 (2015) · Zbl 1343.91009
[643] Gomez-Gardeñes, J.; Romance, M.; Criado, R.; Vilone, D.; Sánchez, A., Evolutionary games defined at the network mesoscale: the public goods game, Chaos Interdiscip. J. Nonlinear Sci., 21, 1, 016113 (2011) · Zbl 1345.91002
[644] Gómez-Gardeñes, J.; Vilone, D.; Sánchez, A., Disentangling social and group heterogeneities: public goods games on complex networks, Europhys. Lett., 95, 6, 68003 (2011)
[645] Peña, J.; Rochat, Y., Bipartite graphs as models of population structures in evolutionary multiplayer games, PLOS ONE, 7, 9 (2012)
[646] Gracia-Lazaro, C.; Gomez-Gardeñes, J.; Floria, L. M.; Moreno, Y., Intergroup information exchange drives cooperation in the public goods game, Phys. Rev. E, 90, 4, 042808 (2014)
[647] Alvarez-Rodriguez, U.; Battiston, F.; de Arruda, G. F.; Moreno, Y.; Perc, M.; Latora, V., Evolutionary dynamics of higher-order interactions in social networks (2020), arXiv:2001.10313
[648] Baronchelli, A.; Felici, M.; Loreto, V.; Caglioti, E.; Steels, L., Sharp transition towards shared vocabularies in multi-agent systems, J. Stat. Mech. Theory Exp., 2006, 06, P06014 (2006) · Zbl 1244.91070
[649] Baronchelli, A.; Dall’Asta, L.; Barrat, A.; Loreto, V., Topology-induced coarsening in language games, Phys. Rev. E, 73, 1, 015102 (2006)
[650] Gneezy, U., Deception: The role of consequences, Amer. Econ. Rev., 95, 1, 384-394 (2005)
[651] Capraro, V.; Perc, M.; Vilone, D., The evolution of lying in well-mixed populations, J. R. Soc. Interface, 16, 20190211 (2019)
[652] Capraro, V.; Perc, M.; Vilone, D., Lying on networks: The role of structure and topology in promoting honesty, Phys. Rev. E, 101, 032305 (2020)
[653] Milinski, M.; Sommerfeld, R. D.; Krambeck, H.-J.; Reed, F. A.; Marotzke, J., The collective-risk social dilemma and the prevention of simulated dangerous climate change, Proc. Natl. Acad. Sci. USA, 105, 7, 2291-2294 (2008)
[654] Freeman, L. C., Q-analysis and the structure of friendship networks, Int. J. Man-Mach. Stud., 12, 4, 367-378 (1980)
[655] Andjelković, M.; Tadić, B.; Maletić, S.; Rajković, M., Hierarchical sequencing of online social graphs, Phys. A, 436, 582-595 (2015) · Zbl 1400.91447
[656] Sekara, V.; Stopczynski, A.; Lehmann, S., Fundamental structures of dynamic social networks, Proc. Natl. Acad. Sci. USA, 113, 36, 9977-9982 (2016)
[657] Mangan, S.; Alon, U., Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. USA, 100, 21, 11980-11985 (2003)
[658] Kuzmin, E.; VanderSluis, B.; Wang, W.; Tan, G.; Deshpande, R.; Chen, Y.; Usaj, M.; Balint, A.; Mattiazzi Usaj, M.; van Leeuwen, J.; Koch, E. N.; Pons, C.; Dagilis, A. J.; Pryszlak, M.; Wang, J. Z.Y.; Hanchard, J.; Riggi, M.; Xu, K.; Heydari, H.; San Luis, B.-J.; Shuteriqi, E.; Zhu, H.; Van Dyk, N.; Sharifpoor, S.; Costanzo, M.; Loewith, R.; Caudy, A.; Bolnick, D.; Brown, G. W.; Andrews, B. J.; Boone, C.; Myers, C. L., Systematic analysis of complex genetic interactions, Science, 360, 6386 (2018)
[659] Schneidman, E.; Still, S.; Berry, M. J.; Bialek, W., Network information and connected correlations, Phys. Rev. Lett., 91, 23, 238701 (2003)
[660] Ibáñez-Marcelo, E.; Campioni, L.; Phinyomark, A.; Petri, G.; Santarcangelo, E. L., Topology highlights mesoscopic functional equivalence between imagery and perception: the case of hypnotizability, NeuroImage, 200, 437-449 (2019)
[661] McPherson, J., Hypernetwork sampling: duality and differentiation among voluntary organizations, Soc. Netw., 3, 4, 225-249 (1982)
[662] Foster, B.; Seidman, S., Urban structures derived from collections of overlapping subsets, Urban Anthropol., 11, 177-192 (1982)
[663] Foster, B.; Seidman, S., Overlap structure of ceremonial events in two Thai villages, Thail. J. Dev. Adm., 24, 143-157 (1984)
[664] Faust, K., Centrality in affiliation networks, Soc. Netw., 19, 2, 157-191 (1997)
[665] Bonacich, P., Power and centrality: A family of measures, Am. J. Sociol., 92, 5, 1170-1182 (1987)
[666] Wylie, S., Mathematical structure in human affairs, by R. H. Atkin, Math. Gaz., 60, 411, 69-70 (1976)
[667] Doreian, P., On the evolution of group and network structure, Soc. Netw., 2, 3, 235-252 (1979)
[668] Lehmann, S., Fundamental structures in dynamic communication networks (2019), arXiv:1907.09966
[669] Karsai, M.; Jo, H.; Kaski, K., Bursty human dynamics, SpringerBriefs in Complexity (2017), Springer International Publishing
[670] Gould, P.; Gatrell, A., A structural analysis of a game: The Liverpool v Manchester united cup final of 1977, Soc. Netw., 2, 3, 253-273 (1979)
[671] Pappalardo, L.; Cintia, P.; Rossi, A.; Massucco, E.; Ferragina, P.; Pedreschi, D.; Giannotti, F., A public data set of spatio-temporal match events in soccer competitions, Sci. Data, 6, 1, 236 (2019)
[672] Gao, T.; Li, F., Studying the utility preservation in social network anonymization via persistent homology, Comput. Secur., 77, 49-64 (2018)
[673] Greening, J.; Pinter-Wollman, N.; Fefferman, N. H., Higher-order interactions: understanding the knowledge capacity of social groups using simplicial sets, Current Zoology, 61, 1, 114-127 (2015)
[674] Catutto, C.; Schmitz, C.; Baldassarri, A.; Servedio, V. D.P.; Loreto, V.; Hotho, a. A.; Grahl, M.; Stumme, G.; Hoche, S.; Nürnberger, A.; Flach, J., Network properties of folksonomies, AI Commun. J. Spec. Issue Netw. Anal. Nat. Sci. Eng. (2007)
[675] Latora, V.; Nicosia, V.; Panzarasa, P., Social cohesion, structural holes, and a tale of two measures, J. Stat. Phys., 151, 745-764 (2013) · Zbl 1266.91083
[676] Milojević, S., Principles of scientific research team formation and evolution, Proc. Natl. Acad. Sci. USA, 111, 11, 3984-3989 (2014)
[677] Xiao, Q., Node importance measure for scientific research collaboration from hypernetwork perspective, Teh. Vjesn., 23, 2, 397-404 (2016)
[678] Newman, M. E.J., Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64, 1, 016131 (2001)
[679] Newman, M. E.J., Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64, 1, 016132 (2001)
[680] Newman, M. E.J., The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98, 2, 404-409 (2001) · Zbl 1065.00518
[681] Bianconi, G.; Darst, R. K.; Iacovacci, J.; Fortunato, S., Triadic closure as a basic generating mechanism of communities in complex networks, Phys. Rev. E, 90, 4, 042806 (2014)
[682] Schneidman, E.; Berry II, M. J.; Segev, R.; Bialek, W., Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440, 7087, 1007 (2006)
[683] Yu, S.; Yang, H.; Nakahara, H.; Santos, G. S.; Nikolić, D.; Plenz, D., Higher-order interactions characterized in cortical activity, J. Neurosci., 31, 48, 17514-17526 (2011)
[684] Shimazaki, H.; Amari, S.-i.; Brown, E. N.; Grün, S., State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data, PLOS Comput. Biol., 8, 3, Article e1002385 pp. (2012)
[685] Köster, U.; Sohl-Dickstein, J.; Gray, C. M.; Olshausen, B. A., Modeling higher-order correlations within cortical microcolumns, PLOS Comput. Biol., 10, 7, Article e1003684 pp. (2014)
[686] Shimazaki, H.; Sadeghi, K.; Ishikawa, T.; Ikegaya, Y.; Toyoizumi, T., Simultaneous silence organizes structured higher-order interactions in neural populations, Sci. Rep., 5, 9821 (2015)
[687] Cayco-Gajic, N. A.; Zylberberg, J.; Shea-Brown, E., Triplet correlations among similarly tuned cells impact population coding, Front. Comput. Neurosci., 9, 57 (2015)
[688] Arenzon, J. J.; De Almeida, R. M., Neural networks with high-order connections, Phys. Rev. E, 48, 5, 4060 (1993)
[689] Lemke, N.; Arenzon, J. J.; Tamarit, F. A., Chaotic dynamics of high-order neural networks, J. Stat. Phys., 79, 1-2, 415-427 (1995) · Zbl 1106.82341
[690] Ezaki, T.; Watanabe, T.; Ohzeki, M.; Masuda, N., Energy landscape analysis of neuroimaging data, Phil. Trans. R. Soc. A, 375, 2096, 20160287 (2017) · Zbl 1404.94004
[691] Watanabe, T.; Hirose, S.; Wada, H.; Imai, Y.; Machida, T.; Shirouzu, I.; Konishi, S.; Miyashita, Y.; Masuda, N., Energy landscapes of resting-state brain networks, Front. Neuroinform., 8, 12 (2014)
[692] Giusti, C.; Pastalkova, E.; Curto, C.; Itskov, V., Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112, 44, 13455-13460 (2015) · Zbl 1355.92015
[693] Dabaghian, Y.; Mémoli, F.; Frank, L.; Carlsson, G., A topological paradigm for hippocampal spatial map formation using persistent homology, PLOS Comput. Biol., 8, 8, Article e1002581 pp. (2012)
[694] Dabaghian, Y.; Brandt, V. L.; Frank, L. M., Reconceiving the hippocampal map as a topological template, Elife, 3, Article e03476 pp. (2014)
[695] Babichev, A.; Morozov, D.; Dabaghian, Y., Robust spatial memory maps encoded by networks with transient connections, PLOS Comput. Biol., 14, 9, Article e1006433 pp. (2018)
[696] Reimann, M. W.; Nolte, M.; Scolamiero, M.; Turner, K.; Perin, R.; Chindemi, G.; Dłotko, P.; Levi, R.; Hess, K.; Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Front. Comput. Neurosci., 11, 48 (2017)
[697] de Vico Fallani, F.; Richiardi, J.; Chavez, M.; Achard, S., Graph analysis of functional brain networks: practical issues in translational neuroscience, Philos. Trans. R. Soc. B, 369, 1653, 20130521 (2014)
[698] Huang, X.; Xu, K.; Chu, C.; Jiang, T.; Yu, S., Weak higher-order interactions in macroscopic functional networks of the resting brain, J. Neurosci., 37, 43, 10481-10497 (2017)
[699] Zhang, H.; Chen, X.; Zhang, Y.; Shen, D., Test-retest reliability of “high-order” functional connectivity in Young healthy adults, Front. Neurosci., 11, 439 (2017)
[700] Plis, S. M.; Sui, J.; Lane, T.; Roy, S.; Clark, V. P.; Potluru, V. K.; Huster, R. J.; Michael, A.; Sponheim, S. R.; Weisend, M. P.; Calhoun, V., High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia, Neuroimage, 102, 35-48 (2014)
[701] Zhang, H.; Chen, X.; Shi, F.; Li, G.; Kim, M.; Giannakopoulos, P.; Haller, S.; Shen, D., Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment, J. Alzheimers Dis., 54, 3, 1095-1112 (2016)
[702] Lee, H.; Kang, H.; Chung, M. K.; Lim, S.; Kim, B.-N.; Lee, D. S., Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology, Hum. Brain Mapp., 38, 3, 1387-1402 (2017)
[703] Lee, H.; Chung, M. K.; Kang, H.; Lee, D. S., Hole detection in metabolic connectivity of Alzheimer’s disease using k- Laplacian, (International Conference on Medical Image Computing and Computer-Assisted Intervention (2014), Springer), 297-304
[704] Bendich, P.; Marron, J. S.; Miller, E.; Pieloch, A.; Skwerer, S., Persistent homology analysis of brain artery trees, Ann. Appl. Stat., 10, 1, 198 (2016)
[705] Lee, H.; Kang, H.; Chung, M. K.; Kim, B.-N.; Lee, D. S., Persistent brain network homology from the perspective of dendrogram, IEEE Trans. Med. Imaging, 31, 12, 2267-2277 (2012)
[706] Lee, H.; Chung, M. K.; Kang, H.; Kim, B.-N.; Lee, D. S., Discriminative persistent homology of brain networks, (2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (2011), IEEE), 841-844
[707] Santos, F. A.; Raposo, E. P.; Coutinho-Filho, M. D.; Copelli, M.; Stam, C. J.; Douw, L., Topological phase transitions in functional brain networks, Physical Review E, 100, 3, 032414 (2019)
[708] Chung, M. K.; Villalta-Gil, V.; Lee, H.; Rathouz, P. J.; Lahey, B. B.; Zald, D. H., Exact topological inference for paired brain networks via persistent homology, (International Conference on Information Processing in Medical Imaging (2017), Springer), 299-310
[709] Rybakken, E.; Baas, N.; Dunn, B., Decoding of neural data using cohomological feature extraction, Neural Comput., 31, 1, 68-93 (2019) · Zbl 1471.92034
[710] Lord, L.-D.; Expert, P.; Fernandes, H. M.; Petri, G.; Van Hartevelt, T. J.; Vaccarino, F.; Deco, G.; Turkheimer, F.; Kringelbach, M. L., Insights into brain architectures from the homological scaffolds of functional connectivity networks, Front. Syst. Neurosci., 10, 85 (2016)
[711] Lee, H.; Chung, M. K.; Choi, H.; Kang, H.; Ha, S.; Kim, Y. K.; Lee, D. S., Harmonic holes as the submodules of brain network and network dissimilarity, (International Workshop on Computational Topology in Image Context (2019), Springer), 110-122
[712] Chung, M. K.; Lee, H.; DiChristofano, A.; Ombao, H.; Solo, V., Exact topological inference of the resting-state brain networks in twins, Netw. Neurosci., 3, 3, 674-694 (2019)
[713] Ibáñez-Marcelo, E.; Campioni, L.; Manzoni, D.; Santarcangelo, E. L.; Petri, G., Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter?, Brain Behav., 9, 6, Article e01277 pp. (2019)
[714] Saggar, M.; Sporns, O.; Gonzalez-Castillo, J.; Bandettini, P. A.; Carlsson, G.; Glover, G.; Reiss, A. L., Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature Commun., 9, 1, 1-14 (2018)
[715] Ellis, C. T.; Lesnick, M.; Henselman-Petrusek, G.; Keller, B.; Cohen, J. D., Feasibility of topological data analysis for event-related fMRI, Netw. Neurosci., 3, 3, 695-706 (2019)
[716] Giusti, C.; Ghrist, R.; Bassett, D. S., Two’s company, three (or more) is a simplex, J. Comput. Neurosci., 41, 1, 1-14 (2016)
[717] Sizemore, A. E.; Phillips-Cremins, J. E.; Ghrist, R.; Bassett, D. S., The importance of the whole: Topological data analysis for the network neuroscientist, Netw. Neurosci., 3, 3, 656-673 (2019)
[718] Case, T. J.; Bender, E. A., Testing for higher order interactions, Am. Nat., 118, 6, 920-929 (1981)
[719] Abrams, P. A., Arguments in favor of higher order interactions, Am. Nat., 121, 6, 887-891 (1983)
[720] Kareiva, P., Special feature: higher order interactions as a foil to reductionist ecology, Ecology, 75, 6 (1994)
[721] Billick, I.; Case, T. J., Higher order interactions in ecological communities: What are they and how can they be detected?, Ecology, 75, 6, 1529-1543 (1994)
[722] Wootton, J., Indirect effects and habitat use in an intertidal community: Interaction chains and interaction modifications, Am. Nat., 141, 1, 71-89 (1993)
[723] Bairey, E.; Kelsic, E. D.; Kishony, R., High-order species interactions shape ecosystem diversity, Nature Commun., 7, 1, 12285 (2017)
[724] Kelsic, E. D.; Zhao, J.; Vetsigian, K.; Kishony, R., Counteraction of antibiotic production and degradation stabilizes microbial communities, Nature, 521, 7553, 516 (2015)
[725] Perlin, M. H.; Clark, D. R.; McKenzie, C.; Patel, H.; Jackson, N.; Kormanik, C.; Powell, C.; Bajorek, A.; Myers, D. A.; Dugatkin, L. A., Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations, Proc. R. Soc. B Biol. Sci., 276, 1674, 3759-3768 (2009)
[726] Abrudan, M. I.; Smakman, F.; Grimbergen, A. J.; Westhoff, S.; Miller, E. L.; Van Wezel, G. P.; Rozen, D. E., Socially mediated induction and suppression of antibiosis during bacterial coexistence, Proc. Natl. Acad. Sci. USA, 112, 35, 11054-11059 (2015)
[727] Koen-Alonso, M., A process-oriented approach to the multispecies functional response, (From Energetics To Ecosystems: The Dynamics and Structure of Ecological Systems (2007), Springer), 1-36
[728] de Oliveira, V. M.; Fontanari, J. F., Random replicators with high-order interactions, Phys. Rev. Lett., 85, 23, 4984-4987 (2000)
[729] Yoshino, Y.; Galla, T.; Tokita, K., Rank abundance relations in evolutionary dynamics of random replicators, Phys. Rev. E, 78, 3, 031924 (2008)
[730] Sonntag, M.; Teichert, H.-M., Competition hypergraphs, Discrete Appl. Math., 143, 1, 324-329 (2004) · Zbl 1056.05103
[731] Golubski, A. J.; Westlund, E. E.; Vandermeer, J.; Pascual, M., Ecological networks over the edge: Hypergraph trait-mediated indirect interaction (TMII) structure, Trends Ecol. Evol., 31, 5, 344-354 (2016)
[732] May, R. M., Will a large complex system be stable?, Nature, 436, 413-414 (1972)
[733] Vandermeer, J. H., The competitive structure of communities: An experimental approach with protozoa, Ecology, 50, 3, 362-371 (1969)
[734] Neill, W. E., The community matrix and interdependence of the competition coefficients, Am. Nat., 108, 962, 399-408 (1974)
[735] Dormann, C. F.; Roxburgh, S. H., Experimental evidence rejects pairwise modelling approach to coexistence in plant communities, Proc. Biol. Sci., 272, 1569, 1279-1285 (2005)
[736] Weigelt, A.; Schumacher, J.; Walther, T.; Bartelheimer, M.; Steinlein, T.; Beyschlag, W., Identifying mechanisms of competition in multi-species communities, J. Ecol., 95, 1, 53-64 (2007)
[737] Allesina, S.; Levine, J. M., A competitive network theory of species diversity, Proc. Natl. Acad. Sci. USA, 108, 14, 5638-5642 (2011)
[738] Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, B. J., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418, 6894, 171 (2002)
[739] Hofbauer, J.; Sigmund, K., Evolutionary game dynamics, Bull. Amer. Math. Soc., 40, 4, 479-519 (2003) · Zbl 1049.91025
[740] Nowak, M. A.; Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 5659, 793-799 (2004)
[741] Taylor, P. D.; Jonker, L. B., Evolutionary stable strategies and game dynamics, Math. Biosci., 40, 1-2, 145-156 (1978) · Zbl 0395.90118
[742] Hofbauer, J.; Schuster, P.; Sigmund, K., A note on evolutionary stable strategies and game dynamics (2010), Levine’s Working Paper Archive 441
[743] Mayfield, M. M.; Stouffer, D. B., Higher-order interactions capture unexplained complexity in diverse communities, Nat. Ecol. Evol., 1, 3, 0062 (2017)
[744] Valverde, S.; Vidiella, B.; Montañez, R.; Fraile, A.; Sacristán, S.; García-Arenal, F., Coexistence of nestedness and modularity in host-pathogen infection networks, Nat. Ecol. Evol., 1-10 (2020)
[745] Mariani, M. S.; Ren, Z.-M.; Bascompte, J.; Tessone, C. J., Nestedness in complex networks: Observation, emergence, and implications, Phys. Rev. (2019)
[746] Oltvai, Z. N.; Barabási, A.-L., Life’s complexity pyramid, Science, 298, 5594, 763-764 (2002)
[747] Aittokallio, T.; Schwikowski, B., Graph-based methods for analysing networks in cell biology, Brief. Bioinform., 7, 3, 243-255 (2006)
[748] Vermeulen, R.; Schymanski, E. L.; Barabási, A.-L.; Miller, G. W., The exposome and health: where chemistry meets biology, Science, 367, 6476, 392-396 (2020)
[749] Ruepp, A.; Waegele, B.; Lechner, M.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Mewes, H.-W., CORUM: The comprehensive resource of mammalian protein complexes—2009, Nucl. Acids Res., 38, suppl_1, D497-D501 (2010)
[750] Wong, P.; Althammer, S.; Hildebrand, A.; Kirschner, A.; Pagel, P.; Geissler, B.; Smialowski, P.; Blöchl, F.; Oesterheld, M.; Schmidt, T., An evolutionary and structural characterization of mammalian protein complex organization, BMC Genomics, 9, 1, 629 (2008)
[751] Klamt, S.; Haus, U.-U.; Theis, F., Hypergraphs and cellular networks, PLOS Comput. Biol., 5, Article e1000385 pp. (2009)
[752] Ritz, A.; Tegge, A. N.; Kim, H.; Poirel, C. L.; Murali, T., Signaling hypergraphs, Trends Biotechnol., 32, 7, 356-362 (2014)
[753] Gaudelet, T.; Malod-Dognin, N.; Pržulj, N., Higher-order molecular organization as a source of biological function, Bioinformatics, 34, 17, i944-i953 (2018)
[754] Pržulj, N.; Corneil, D. G.; Jurisica, I., Modeling interactome: scale-free or geometric?, Bioinformatics, 20, 18, 3508-3515 (2004)
[755] Franzese, N.; Groce, A.; Murali, T.; Ritz, A., Hypergraph-based connectivity measures for signaling pathway topologies, PLOS Comput. Biol., 15, 10 (2019)
[756] Klimm, F.; Deane, C. M.; Reinert, G., Hypergraphs for predicting essential genes using multiprotein complex data, bioRxiv (2020)
[757] Pearcy, N.; Chuzhanova, N.; Crofts, J. J., Complexity and robustness in hypernetwork models of metabolism, J. Theoret. Biol., 406, 99-104 (2016)
[758] Shen, T.; Zhang, Z.; Chen, Z.; Gu, D.; Liang, S.; Xu, Y.; Li, R.; Wei, Y.; Liu, Z.; Yi, Y.; Xie, X., A genome-scale metabolic network alignment method within a hypergraph-based framework using a rotational tensor-vector product, Sci. Rep., 8, 1, 1-16 (2018)
[759] Jost, J.; Mulas, R., Hypergraph Laplace operators for chemical reaction networks, Adv. Math., 351, 870-896 (2019) · Zbl 1415.05107
[760] Tian, Z.; Hwang, T.; Kuang, R., A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge, Bioinformatics, 25, 21, 2831-2838 (2009)
[761] Battle, A.; Jonikas, M. C.; Walter, P.; Weissman, J. S.; Koller, D., Automated identification of pathways from quantitative genetic interaction data, Mol. Syst. Biol., 6, 1 (2010)
[762] Sumazin, P.; Yang, X.; Chiu, H.-S.; Chung, W.-J.; Iyer, A.; Llobet-Navas, D.; Rajbhandari, P.; Bansal, M.; Guarnieri, P.; Silva, J.; Califano, A., An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma, Cell, 147, 2, 370-381 (2011)
[763] Rahman, A.; Poirel, C. L.; Badger, D. J.; Estep, C.; Murali, T., Reverse engineering molecular hypergraphs, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 5, 1113-1124 (2013)
[764] Marques-Pita, M.; Rocha, L. M., Canalization and control in automata networks: body segmentation in drosophila melanogaster, PLOS ONE, 8, 3 (2013)
[765] Kong, Y.; Yu, T., A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale, BMC Genomics, 20, 1, 397 (2019)
[766] Zimmer, A.; Katzir, I.; Dekel, E.; Mayo, A. E.; Alon, U., Prediction of multidimensional drug dose responses based on measurements of drug pairs, Proc. Natl. Acad. Sci. USA, 113, 37, 10442-10447 (2016)
[767] Katzir, I.; Cokol, M.; Aldridge, B. B.; Alon, U., Prediction of ultra-high-order antibiotic combinations based on pairwise interactions, PLOS Comput. Biol., 15, 1, Article e1006774 pp. (2019)
[768] Tendler, A.; Zimmer, A.; Mayo, A.; Alon, U., Noise-precision tradeoff in predicting combinations of mutations and drugs, PLOS Comput. Biol., 15, 5, Article e1006956 pp. (2019)
[769] Zimmer, A.; Tendler, A.; Katzir, I.; Mayo, A.; Alon, U., Prediction of drug cocktail effects when the number of measurements is limited, PLoS Biol., 15, 10, Article e2002518 pp. (2017)
[770] Otwinowski, J.; Plotkin, J. B., Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc. Natl. Acad. Sci. USA, 111, 22, E2301-E2309 (2014)
[771] Crona, K.; Gavryushkin, A.; Greene, D.; Beerenwinkel, N., Inferring genetic interactions from comparative fitness data, Elife, 6, Article e28629 pp. (2017)
[772] Weinreich, D. M.; Lan, Y.; Wylie, C. S.; Heckendorn, R. B., Should evolutionary geneticists worry about higher-order epistasis?, Curr. Opin. Genet. Dev., 23, 6, 700-707 (2013)
[773] Mackay, T. F.; Moore, J. H., Why epistasis is important for tackling complex human disease genetics, Genome Med., 6, 6, 42 (2014)
[774] Sanchez, A., Defining higher-order interactions in synthetic ecology: lessons from physics and quantitative genetics, Cell Syst., 9, 6, 519-520 (2019)
[775] Guerrero, R. F.; Scarpino, S. V.; Rodrigues, J. V.; Hartl, D. L.; Ogbunugafor, C. B., Proteostasis environment shapes higher-order epistasis operating on antibiotic resistance, Genetics, 212, 2, 565-575 (2019)
[776] Yitbarek, S.; Guittar, J. L.; Knutie, S. A.; Ogbunugafor, C. B., Deconstructing higher-order interactions in the microbiota: A theoretical examination, bioRxiv, 647156 (2019)
[777] Mickalide, H.; Kuehn, S., Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community, Cell Syst., 9, 6, 521-533 (2019)
[778] Niu, Y.; Wang, G.; Qu, C.; Yan, G., RWHMDA: random walk on hypergraph for microbe-disease association prediction, Front. Microbiol., 10, 1578 (2019)
[779] St-Onge, G.; Thibeault, V.; Allard, A.; Dubé, L. J.; Hébert-Dufresne, L., School closures, event cancellations, and the mesoscopic localization of epidemics in networks with higher-order structure (2020), arXiv:2003.05924
[780] Pokorny, F. T.; Hawasly, M.; Ramamoorthy, S., Topological trajectory classification with filtrations of simplicial complexes and persistent homology, Int. J. Robot. Res., 35, 1-3, 204-223 (2016)
[781] Herlihy, M.; Kozlov, D.; Rajsbaum, S., Distributed computing through combinatorial topology (2013), Newnes
[782] É. Goubault, J. Ledent, S. Rajsbaum, A simplicial complex model for dynamic epistemic logic to study distributed task computability, in: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, 2018. · Zbl 1498.03045
[783] van Ditmarsch, H.; Goubault, E.; Ledent, J.; Rajsbaum, S., Knowledge and simplicial complexes (2020), arXiv:2002.08863
[784] Reitz, M.; Bianconi, G., The higher-order spectrum of simplicial complexes: A renormalization group approach (2020), arXiv:200309143
[785] Kališnik, S.; Kurlin, V.; Lešnik, D., A higher-dimensional homologically persistent skeleton, Adv. Appl. Math., 102, 113-142 (2019) · Zbl 1423.55008
[786] Guerra, M.; Gregorio, A. D.; Fugacci, U.; Petri, G.; Vaccarino, F., Homological scaffold via minimal homology bases (2020), arXiv:2004.11606
[787] Karypis, G.; Aggarwal, R.; Kumar, V.; Shekhar, S., Multilevel hypergraph partitioning: Applications in VLSI domain, IEEE Trans. Very Large Scale Integr. VLSI Syst., 7, 1, 69-79 (1999)
[788] Neubauer, N.; Obermayer, K., Towards community detection in k-partite k-uniform hypergraphs, (Proceedings of the NIPS 2009 Workshop on Analyzing Networks and Learning with Graphs (2009)), 1-9
[789] Marietti, M.; Testa, D., Cores of simplicial complexes, Discrete Comput. Geom., 40, 3, 444-468 (2008) · Zbl 1157.57013
[790] Duval, A. M.; Klivans, C. J.; Martin, J. L., Critical groups of simplicial complexes, Ann. Comb., 17, 1, 53-70 (2013) · Zbl 1263.05124
[791] Steenbergen, J.; Klivans, C.; Mukherjee, S., A Cheeger-type inequality on simplicial complexes, Adv. Appl. Math., 56, 56-77 (2014) · Zbl 1305.55010
[792] Parzanchevski, O., Mixing in high-dimensional expanders, Combin. Probab. Comput., 26, 5, 746-761 (2017) · Zbl 1371.05329
[793] Sizemore, A.; Giusti, C.; Bassett, D. S., Classification of weighted networks through mesoscale homological features, J. Complex Netw., 5, 2, 245-273 (2017)
[794] Petri, G.; Scolamiero, M.; Donato, I.; Vaccarino, F., Topological strata of weighted complex networks, PLOS ONE, 8, 6 (2013)
[795] Bobrowski, O.; Skraba, P., Homological percolation and the euler characteristic, Phys. Rev. E, 101, 3, 032304 (2020)
[796] Brugere, I.; Gallagher, B.; Berger-Wolf, T. Y., Network structure inference,a survey: Motivations,methods,and applications, ACM Comput. Surv., 51, 24:1-24:39 (2018)
[797] Peixoto, T. P., Network reconstruction and community detection from dynamics, Phys. Rev. Lett., 123, 12, 128301 (2019)
[798] Squartini, T.; Caldarelli, G.; Cimini, G.; Gabrielli, A.; Garlaschelli, D., Reconstruction methods for networks: the case of economic and financial systems, Phys. Rep., 757, 1-47 (2018) · Zbl 1405.90039
[799] Phinyomark, A.; Ibanez-Marcelo, E.; Petri, G., Resting-state fmri functional connectivity: Big data preprocessing pipelines and topological data analysis, IEEE Trans. Big Data, 3, 4, 415-428 (2017)
[800] Battiston, S.; Glattfelder, J. B.; Garlaschelli, D.; Lillo, F.; Caldarelli, G., The structure of financial networks, (Network Science (2010), Springer), 131-163
[801] Faes, L.; Kugiumtzis, D.; Nollo, G.; Jurysta, F.; Marinazzo, D., Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E, 91, 3, 032904 (2015)
[802] Faes, L.; Marinazzo, D.; Stramaglia, S., Multiscale information decomposition: Exact computation for multivariate Gaussian processes, Entropy, 19, 8, 408 (2017)
[803] Rosas, F. E.; Mediano, P. A.; Gastpar, M.; Jensen, H. J., Quantifying high-order interdependencies via multivariate extensions of the mutual information, Phys. Rev. E, 100, 3, 032305 (2019)
[804] Hébert-Dufresne, L.; Scarpino, S. V.; Young, J.-G., Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement, Nat. Phys., 1-6 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.