×

On constantive simple and order-primal algebras. (English) Zbl 1109.08002

Given a finite partially ordered set \((A,\leq)\), an algebra \(\mathcal A\) defined on this set is said to be order-primal if every finitary function on \(A\) which preserves the given partial order is a term function of \(\mathcal A\). The present paper considers the case when the set \(A\) is connected under \(\leq\), which means that any two elements \(a,b\) of \(A\) can be connected by a sequence of elements starting with \(a\) and ending in \(b\) such that any two neighbouring elements of the sequence are comparable. In this case it is easy to deduce from known results that the algebra \(\mathcal A\) is simple, has no proper subalgebra and no non-identical automorphism, and every constant function is a term function of \(\mathcal A\) (the last of these properties is meant by saying that \(\mathcal A\) is constantive); furthermore, \(\mathcal A\) must have at least two fundamental operations which are not both unary. After this, the authors investigate the question when such an algebra generates a minimal variety or quasivariety, and also obtain new primality criteria for algebras whose set of term functions contains all functions which preserve a connected unbounded order on the base set of the algebra.

MSC:

08A40 Operations and polynomials in algebraic structures, primal algebras
06A11 Algebraic aspects of posets
06F25 Ordered rings, algebras, modules
08B99 Varieties
Full Text: DOI

References:

[1] Bergman, C.: Structural Completeness in Algebra and Logic, 1989, preprint. · Zbl 0749.08007
[2] Burris, S. and Sankappanavar, H. P.: A Course in Universal Algebra, Springer, New York, 1981. · Zbl 0478.08001
[3] Davey, B. A., Quackenbush, R. W. and Schweigert, D.: Monotone clones and the varieties they determine, Order 7 (1990), 145–167. · Zbl 0734.08001 · doi:10.1007/BF00383763
[4] Demetrovics, J. and Rónyai, L.: Algebraic properties of crowns and fences, Order 6 (1989), 91–99. · Zbl 0695.08005 · doi:10.1007/BF00341639
[5] Denecke, K.: Preprimal Algebras, Akademie Verlag, Berlin, 1982.
[6] Foster, A. L.: The identities of – and unique subdirect factorization within classes of universal algebra, Math. Z. 62 (1955), 171–188. · Zbl 0064.26301 · doi:10.1007/BF01180631
[7] Foster, A. L.: Generalized equational maximality and primal – in the small-algebras, Math. Z. 79 (1962), 127–146. · Zbl 0113.24903 · doi:10.1007/BF01193111
[8] Knoebel, A.: The Equational Classes Generated by Single Functionally Precomplete Algebras, Memoirs of the American Mathematical Society, Nr. 332, Vol. 157, Providence, Rhode Island, USA, 1985. · Zbl 0584.08002
[9] Kun, G.: Order Varieties and Monotone Retactions of Finite Posets, 2000, preprint.
[10] Larose, B. and Zádori, L.: Algebraic properties and dismantlability of finite posets, Discrete Math. 163 (1997), 89–99. · Zbl 0872.06001 · doi:10.1016/0012-365X(95)00312-K
[11] Larose, B.: A Note on Minimal Varieties Generated by Order-Primal Algebras, 2002, preprint. · Zbl 1090.08004
[12] Lausch, H. and Nöbauer, W.: Algebra of Polynomials, North Holland Publ. Comp. New York, 1973. · Zbl 0283.12101
[13] Ratanaprasert, C.: On Monotone Clones of Connected Ordered Sets, General Algebra and Discrete Mathematics, 59th Arbeitstagung Allgemeine Algebra, Potsdam, 2000.
[14] Rosenberg, I. G.: Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen, Rozpravy Českosloven, Akademie \(\textrm {\v Ved}\) . Ser. Math. Nat. Sci. 80 (1970), 3–93.
[15] Rousseau, G.: Completeness in finite algebras with a single operation, Proc. Am. Math. Soc. 18 (1967), 1009–1013. · Zbl 0157.04103 · doi:10.1090/S0002-9939-1967-0217002-1
[16] Tardos, G.: A maximal clone of monotone operations which is not finitely generated, Order 3 (1986), 211–218. · Zbl 0614.08006 · doi:10.1007/BF00400284
[17] Kun, G. and Szabó, Cs.: Order varieties and monotone retractions of finite posets, Order 18 (2001), 79–88. · Zbl 0992.06001 · doi:10.1023/A:1010681409599
[18] McKenzie, R.: Monotone clones, residual smallness and congruence distributivity, Bull. Aust. Math. Soc. 41 (1990), 283–290. · Zbl 0695.08012 · doi:10.1017/S0004972700018104
[19] Rival, I.: The problem of fixed points in ordered sets, Ann. Discrete Math. 8 (1980), 283–292. · Zbl 0448.06001 · doi:10.1016/S0167-5060(08)70890-2
[20] Kearnes, K. A. and Szendrei, Á.: A characterization of minimal locally finite varieties, Trans. Am. Math. Soc. 345(2) (1997), 1749–1768. · Zbl 0871.08005 · doi:10.1090/S0002-9947-97-01883-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.