×

Multi-objective optimal control of tungiasis diseases with terminal demands. (English) Zbl 1537.92127

Summary: In this paper, we aim to minimize the epidemic size of tungiasis disease and economic costs simultaneously, with terminal demands for infected humans. A human-jigger parasite control system with four control schemes for humans and jiggers is established. We propose a multi-objective optimal control problem with terminal constraints, in which the accumulated number of infected humans and control costs are involved. By applying the modified normal boundary intersection algorithm and the interior point scheme, numerical simulations for different combinations of control schemes are carried out, and actual data in Madagascar are used. Effective combination schemes are indicated from the perspectives of disease eradication, cost saving and time saving. Once these effective combinations are properly performed, the disease can be controlled. When only minimizing the epidemic size, the combination of the optimal treatments and adulticiding efforts is the best choice in the rainy season; the combination of the optimal personal protections and treatments is the preferential option in the dry season. When only minimizing the economical cost, the combination of the optimal adulticide and larvicide is the better selection in the rainy season; the combination of the optimal personal protections, treatments and adulticiding efforts is the prior choose in the dry season. Thus, there is a trade-off between the two objectives for all the effective combinations, decision-makers may choose an appropriate one to control the disease.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
90C29 Multi-objective and goal programming

Software:

NBI
Full Text: DOI

References:

[1] Abrha, S., Heukelbach, J., Peterson, G. M., Christenson, J. K., Carroll, S., Kosari, S., Bartholomeus, A., Feldmeier, H. and Thomas, J., Clinical interventions for tungiasis (sand flea disease): A systematic review, Lancet Infect. Dis.21(8) (2021) e234-e245.
[2] Martins, A. C. T., de Brito, A. R., Kurizky, P. S., Goncalves, R. G., Santana, Y. R. T., de Carvalho, F. C. A. and Gomes, C. M., The efficacy of topical, oral and surgical interventions for the treatment of tungiasis: A systematic review of the literature, PLoS Negl. Trop. Dis.15(8) (2021) e0009722.
[3] Matono, T., Kato, Y., Yotsu, R. and Ohmagari, N., Tungiasis: Diagnosis at a glance,Lancet388(10041) (2016) 275.
[4] Cancio-Suárez, M. R., García, M. A., Monroig, J. and Lloveras, S., Tungiasis: Another traveler’s concern, Am. J. Med.133(8) (2020) e434-e435.
[5] Feldmeier, H., Heukelbach, J., Ugbomoiko, U. S., Sentongo, E., Mbabazi, P., von Samson-Himmelstjerna, G., Krantz, I. and International Expert Group for Tungiasis, Tungiasis: A neglected disease with many challenges for global public health, PLoS Negl. Trop. Dis.8(10) (2014) e3133.
[6] Nagy, N., Abari, E., D’Haese, J., Calheiros, C., Heukelbach, J., Mencke, N., Feldmeier, H. and Mehlhorn, H., Investigations on the life cycle and morphology of tunga penetrans in Brazil, Parasitol. Res.101(Suppl 2) (2007) S233-S242.
[7] Ugbomoiko, U. S., Ariza, L., Ofoezie, I. E. and Heukelbach, J., Risk factors for tungiasis in Nigeria: Identification of targets for effective intervention, PLoS Negl. Trop. Dis.1(3) (2007) e87.
[8] Elson, L., Randu, K., Feldmeier, H. and Fillinger, U., Efficacy of a mixture of neem seed oil (Azadirachta indica) and coconut oil (Cocos nucifera) for topical treatment of tungiasis. A randomized controlled, proof-of-principle study, PLoS Negl. Trop. Dis.13(11) (2019) e0007822.
[9] Deka, M. A., Mapping the geographic distribution of tungiasis in Sub-Saharan Africa, Trop. Med. Infect. Dis.5(3) (2020) 122.
[10] Amare, H. H. and Lindtjorn, B., Risk factors for scabies, tungiasis, and tinea infections among schoolchildren in southern Ethiopia: A cross-sectional Bayesian multilevel model, PLoS Negl. Trop. Dis.15(10) (2021) e0009816.
[11] Jorga, S. D., Dessie, Y. L., Kedir, M. R. and Donacho, D. O., Prevalence of tungiasis and its risk factors of among children of Mettu woreda, southwest Ethiopia, 2020, PLoS ONE17(1) (2022) e0262168.
[12] Nyang’inja, R. A., Angwenyi, D. N., Musyoka, C. M. and Orwa, T. O., Mathematical modeling of the effects of public health education on tungiasis — a neglected disease with many challenges in endemic communities, Adv. Differ. Equ.2018 (2018) 426. · Zbl 1448.92328
[13] Lv, W., Liu, L. and Zhuang, S. J., Dynamics and optimal control in transmission of tungiasis diseases, Int. J. Biomath.15(02) (2022) 2150076.
[14] Kong, L. L., Li, L. P., Kang, S. G., Liu, Y. J. and Feng, W. Y., Dynamic behavior of a stochastic Tungiasis model for public health education, Discrete Dyn. Nat. Soc.2022 (2022) 4927261. · Zbl 1490.92099
[15] Zhou, L., Fan, M., Hou, Q., Jin, Z. and Sun, X., Transmission dynamics and optimal control of Brucellosis in Inner Mongolia of China, Math. Biosci. Eng.15(2) (2018) 543-567. · Zbl 1375.92076
[16] Bolzoni, L., Bonacini, E., Della Marca, R. and Groppi, M., Optimal control of epidemic size and duration with limited resources, Math. Biosci.315 (2019) 108232. · Zbl 1425.92178
[17] Yousefpour, A., Jahanshahi, H. and Bekiros, S., Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak, Chaos Solitons Fractals136 (2020) 109883.
[18] Zou, X. Y., Fang, Z. X. and Xiong, S. W., A discrete particle swarm optimization method for assignment of supermarket resources to urban residential communities under the situation of epidemic control, Appl. Soft Comput.98 (2021) 106832.
[19] Hezam, I. M., COVID-19 and Chikungunya: An optimal control model with consideration of social and environmental factors, J. Ambient Intell. Human Comput. (2022), https://doi.org/10.1007/s12652-022-03796-y.
[20] Lv, W., Zhuang, S. J. and Yu, C., Robust bi-objective optimal control of tungiasis diseases, Chaos Solitons Fractals156 (2022) 111829.
[21] van den Driessche, P. and Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci.180(S1) (2002) 29-48. · Zbl 1015.92036
[22] Pareto, V., Manuale di Economia Politica, Milan, Italy, Societa Editrice Libraria (1906).
[23] Libotte, G. B., Lobato, F. S., Platt, G. M. and Silva Neto, A. J., Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment, Comput. Meth. Prog. Bio.196 (2020) 105664.
[24] Siebert, B. A., Gleeson, J. P. and Asllani, M., Nonlinear random walks optimize the trade-off between cost and prevention in epidemics lockdown measures: The ESIR model, Chaos Soliton. Fract.161 (2022) 112322.
[25] Das, I. and Dennis, J. E., Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optimiz.8(3) (1998) 631-657. · Zbl 0911.90287
[26] Razanakolona, L. R., Raharisoa, A., Soankasina, A. H., De La Croix Jaonasoa, J., Nicolas, P., Antilahy, J. A., Chebbah, D., Akhoundi, M. and Izri, A., Clinical and epidemiological survey of tungiasis in Madagascar, Travel Med. Infect. Dis.50 (2022) 102449.
[27] Heukelbach, J., Wilcke, T., Harms, G. and Feldmeier, H., Seasonal variation of Tungiasis in an endemic community, Am. J. Trop. Med. Hyg.72(2) (2005) 145-149.
[28] IndexMundi-Madagascar, https://www.indexmundi.com/madagascar, Access time: January 17, 2023.
[29] Abboubakar, H., Kamgang, J. C., Nkamba, L. N. and Tieudjo, D., Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, J. Math. Biol.76(1-2) (2018) 379-427. · Zbl 1393.37098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.