×

Spatiotemporal dynamics in epidemic models with Lévy flights: a fractional diffusion approach. (English. French summary) Zbl 1512.35316

Summary: Recent field and experimental studies show that mobility patterns for humans exhibit scale-free nonlocal dynamics with heavy-tailed distributions characterized by Lévy flights. To study the long-range geographical spread of infectious diseases, in this paper we propose a susceptible-infectious-susceptible epidemic model with Lévy flights in which the dispersal of susceptible and infectious individuals follows a heavy-tailed jump distribution. Owing to the fractional diffusion described by a spectral fractional Neumann Laplacian, the nonlocal diffusion model can be used to address the spatiotemporal dynamics driven by the nonlocal dispersal. The primary focuses are on the existence and stability of disease-free and endemic equilibria and the impact of dispersal rates and fractional powers on the spatial profiles of these equilibria. A variational characterization of the basic reproduction number \(\mathcal{R}_0\) is obtained and its dependence on dispersal rates and fractional powers is also examined. Then \(\mathcal{R}_0\) is utilized to investigate the effects of spatial heterogeneity on the transmission dynamics. It is shown that \(\mathcal{R}_0\) serves as a threshold for determining the existence and nonexistence of an epidemic equilibrium as well as the stability of the disease-free and endemic equilibria. In particular, in low-risk regions both dispersal rates and fractional powers play a critical role and are capable of altering the threshold value. Numerical simulations were performed to illustrate the theoretical results.

MSC:

35J62 Quasilinear elliptic equations
35R11 Fractional partial differential equations
35P15 Estimates of eigenvalues in context of PDEs
92D30 Epidemiology
Full Text: DOI

References:

[1] Allen, L. J.S.; Bolker, B. M.; Lou, Y.; Nevai, A. L., Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21, 1-20 (2008) · Zbl 1146.92028
[2] Andreu-Vaillo, F.; Mazón, J. M.; Rossi, J. D.; Toledo-Melero, J. J., Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165 (2010), Amer. Math. Soc.: Amer. Math. Soc. Providence, Rhode Island · Zbl 1214.45002
[3] Bates, P. W.; Han, J.; Zhao, G., On a nonlocal phase-field system, Nonlinear Anal., 64, 2251-2278 (2006) · Zbl 1092.35010
[4] Bates, P. W.; Zhao, G., Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332, 428-440 (2007) · Zbl 1114.35017
[5] Bendahmane, M.; Ruiz-Baier, R.; Tian, C., Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model, J. Math. Biol., 72, 1441-1465 (2016) · Zbl 1338.35041
[6] Brasco, L.; Parini, E., The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var., 9, 323-355 (2015) · Zbl 1349.35263
[7] Brockmann, D.; Hufnagel, L.; Geisel, T., The scaling laws of human travel, Nature, 439, 462-465 (2006)
[8] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20 (2016), Springer: Springer Cham · Zbl 1377.35002
[9] Cabré, X.; Roquejoffre, J.-M., The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320, 679-722 (2013) · Zbl 1307.35310
[10] Caffarelli, L.; Dipierro, S.; Valdinoci, E., A logistic equation with nonlocal interactions, Kinet. Relat. Models, 10, 141-170 (2017) · Zbl 1356.35261
[11] Caffarelli, L.; Stinga, P., Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 767-807 (2016) · Zbl 1381.35211
[12] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations (2003), John Wiley and Sons Inc.: John Wiley and Sons Inc. West Sussex, England · Zbl 1059.92051
[13] Carracedo, C. M.; Alix, M. S., The Theory of Fractional Powers of Operators (2001), Elsevier Science B. V.: Elsevier Science B. V. New York · Zbl 0971.47011
[14] Chaves, A. S., A fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 13-16 (1998) · Zbl 1026.82524
[15] Cholewa, J.; Dlotko, T., Global Attractors in Abstract Parabolic Problems (2000), Cambridge University Press: Cambridge University Press New York · Zbl 0954.35002
[16] Dipierro, S., Contemporary Research in Elliptic PDEs and Related Topics (2019), Springer: Springer Switzerland
[17] Dannemann, T.; Boyerd, D.; Miramontes, O., Lévy flight movements prevent extinctions and maximize population abundances in fragile Lotka-Volterra systems, Proc. Natl. Acad. Sci. USA, 115, 3794-3799 (2018)
[18] Estrada-Rodriguez, G.; Gimperlein, H.; Painter, K. J., Fractional Patlak-Keller-Segel equations for chemotactic superdiffusion, SIAM J. Appl. Math., 78, 1155-1173 (2018) · Zbl 1390.92024
[19] Felmer, P.; Yangari, M., Fast propagation for fractional KPP equations with slowly decaying initial conditions, SIAM J. Math. Anal., 45, 662-678 (2013) · Zbl 1371.35324
[20] Gao, L.; Hethcote, H. W., Disease transmission models with density-dependent demographics, J. Math. Biol., 30, 717-731 (1992) · Zbl 0774.92018
[21] González, M. C.; Hidalgo, C. A.; Barabási, A.-L., Understanding individual human mobility patterns, Nature, 453, 779-782 (2008)
[22] Grubb, G., Regularity of spectral fractional Dirichlet and Neumann problems, Math. Nachr., 289, 831-844 (2016) · Zbl 1448.47062
[23] Gui, C.; Zhao, M., Traveling wave solutions of Allen-Cahn equation with a fractional Laplacian, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 32, 785-812 (2015) · Zbl 1326.35068
[24] Hanert, E.; Schumacher, E.; Deleersnijder, E., Front dynamics in fractional-order epidemic models, J. Theor. Biol., 279, 9-16 (2011) · Zbl 1397.92636
[25] Huang, W.; Han, M.; Liu, K., Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7, 51-66 (2010) · Zbl 1190.35120
[26] Li, B.; Li, H.; Tong, Y., Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68, 68-96 (2017) · Zbl 1375.35255
[27] Li, H.; Peng, R.; Wang, F.-B., Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differ. Equ., 262, 885-913 (2017) · Zbl 1355.35107
[28] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Birkhäuser: Birkhäuser Basel · Zbl 0816.35001
[29] Ma, L.; Niu, H.-T.; Wang, Z.-C., Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian, Commun. Pure Appl. Anal., 18, 2457-2472 (2019) · Zbl 1481.35063
[30] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), W. H. Freeman and Company: W. H. Freeman and Company New York · Zbl 0504.28001
[31] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[32] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1006.92002
[33] Ni, W.-M., The Mathematics of Diffusion (2011), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 1230.35003
[34] Nirenberg, L., Topic in Nonlinear Functional Analysis (1974), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0286.47037
[35] Okubo, A.; Levin, S. A., Diffusion and Ecological Problems: Modern Perspectives (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1027.92022
[36] Raichlen, D. A.; Wood, B.; Gordon, A. D.; Mabulla, A. Z.P.; Marlowe, F. W.; Pontzer, H., Evidence of Lévy walk foraging patterns in human hunter-gatherers, Proc. Natl. Acad. Sci. USA, 111, 728-733 (2014)
[37] Ruan, S., Spatial-temporal dynamics in nonlocal epidemiological models, (Takeuchi, Y.; Sato, K.; Iwasa, Y., Mathematics for Life Science and Medicine (2007), Springer-Verlag: Springer-Verlag Berlin), 97-122
[38] Ruan, S.; Wu, J., Modeling spatial spread of communicable diseases involving animal hosts, (Cantrell, R. S.; Cosner, C.; Ruan, S., Spatial Ecology (2009), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL), 293-316 · Zbl 1183.92074
[39] Salem, S., Propagation of chaos for fractional Keller Segel equations in diffusion dominated and fair competition cases, J. Math. Pures Appl., 132, 79-132 (2019) · Zbl 1427.35297
[40] Stan, D.; Vázquez, J. L., The Fisher-KPP equation with nonlinear fractional diffusion, SIAM J. Math. Anal., 46, 3241-3276 (2014) · Zbl 1323.35088
[41] Stinga, P. R., User’s Guide to the Fractional Laplacian and the Method of Semigroups, Handbook of Fractional Calculus with Applications, vol. 2 (2019), Walter de Gruyter: Walter de Gruyter Boston
[42] Stinga, P. R.; Torrea, J. L., Extension problem and Harnack’s inequality for some fractional operators, Commun. Partial Differ. Equ., 35, 2092-2122 (2010) · Zbl 1209.26013
[43] Stinga, P. R.; Volzone, B., Fractional semilinear Neumann problems arising from a fractional Keller-Segel model, Calc. Var. Partial Differ. Equ., 54, 1009-1042 (2015) · Zbl 1328.35283
[44] Vázquez, J. L., The mathematical theories of diffusion: nonlinear and fractional diffusion, (Bonforte, M.; Grillo, G., Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math., vol. 2186 (2017), Springer: Springer Cham), 205-278 · Zbl 1492.35151
[45] Viswanathan, G. M.; Raposo, E. P.; da Luz, M. G.E., Lévy flights and superdiffusion in the context of biological encounters and random searches, Phys. Life Rev., 5, 133-150 (2008)
[46] Webb, G. F., A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84, 150-161 (1981) · Zbl 0484.92019
[47] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer: Springer New York · Zbl 0870.35116
[48] Xu, W.-B.; Li, W.-T.; Ruan, S., Spatial propagation in an epidemic model with nonlocal diffusion: the influences of initial data and dispersal, Sci. China Math., 63, 2177-2206 (2020) · Zbl 1464.35384
[49] Yang, F.-Y.; Li, W.-T.; Ruan, S., Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differ. Equ., 267, 2011-2051 (2019) · Zbl 1416.35285
[50] Yosida, K., Functional Analysis (1995), Springer: Springer Berlin · Zbl 0152.32102
[51] Zhao, G., The principal eigenvalue problems for perturbed fractional Laplace operators, Tamkang J. Math., 52, 189-220 (2021) · Zbl 1479.35584
[52] Zhao, G.; Ruan, S., Spatial and temporal dynamics of a nonlocal viral infection model, SIAM J. Appl. Math., 78, 1954-1980 (2018) · Zbl 1410.35261
[53] G. Zhao, S. Ruan, Singularly perturbed eigenvalue problems of spectral fractional Laplace operators, submitted for publication.
[54] Zaburdaev, V.; Denisov, S.; Klafter, J., Lévy walks, Rev. Mod. Phys., 87, 483-530 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.