×

Quasiperiodic birhythmicity in a multicycle van der Pol oscillator. (English) Zbl 07920641

Belhaq, Mohamed (ed.), Advances in nonlinear dynamics and control of mechanical and physical systems. Selected articles from CSNDD, Marrakesh, Morocco, May 15–17, 2023. Singapore: Springer. Springer Proc. Phys. 301, 23-37 (2024).
Summary: In this work, the dynamics of a time-delayed multicycle van der Pol oscillator is investigated in the case where the delay amplitude is harmonically modulated around a mean value with a certain amplitude and frequency. Using perturbation methods, approximate analytical solutions of quasiperiodic (QP) oscillations and their bifurcation equations are obtained and regions of existence of different solutions are determined. It is revealed that, while monorhythmic and birhythmic periodic oscillations are commonly present in the undelayed or delay-unmodulated multicycle van der Pol oscillator, the delay-modulated oscillator may exhibit QP-monorhythmicity or QP-birhythmicity. Based on the bifurcation diagrams, transitions between different rhythmicities are derived. The results show that for appropriate values of delay parameters, large-amplitude stable (QP-monorhythmic) oscillations can take place over a broadband of the modulation frequency near the delay-induced parametric resonance. Bistability generated by QP-birhythmicity can also occur for different values of delay parameters.
For the entire collection see [Zbl 1537.74003].

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Goldbeter, A., Computational approaches to cellular rhythms, Nature, 420, 238, 2002 · doi:10.1038/nature01259
[2] Kar, S.; Ray, DS, Large fluctuations and nonlinear dynamics of birhythmicity, Europhys. Lett., 67, 137, 2004 · doi:10.1209/epl/i2003-10277-9
[3] Thompson, JMT; Stewart, HB, Nonlinear Dynamics and Chaos, 1986, Chichester: Wiley, Chichester · Zbl 0601.58001
[4] C.A.K. Kwuimy, C. Nataraj, In Structural Nonlinear Dynamics and Diagnosis, ed. by M. Belhaq, vol. 168 (Springer, Switzerland, 2015), p. 97
[5] M. Alamgir, I.R. Epstein, Systematic design of chemical oscillators. 17. Birhythmicity and compound oscillation in coupled chemical oscillators: chlorite-bromate-iodide system. J. Amer. Chem. Soc. 105, 2500 (1983)
[6] Kaiser, F.; Eichwald, S., Bifurcation structure of a driven, multi-limit-cycle van der pol oscillator (i): the superharmonic resonance structure, Int. J. Bifurc. Chaos, 1, 485, 1991 · Zbl 0878.34029 · doi:10.1142/S0218127491000385
[7] Eichwald, C.; Kaiser, F., Bifurcation structure of a driven multi-limit-cycle van der Pol oscillator (ii): symmetry-breaking crisis and intermittency, Int. J. Bifurc. Chaos, 1, 711, 1991 · Zbl 0878.34030 · doi:10.1142/S021812749100052X
[8] Shiau, YH; Peng, YF; Hwang, RR; Hu, CK, Multistability and symmetry breaking in the two-dimensional flow around a square cylinder, Phys. Rev. E, 60, 6188, 1999 · doi:10.1103/PhysRevE.60.6188
[9] H.G. Enjieu Kadji, J.B. Chabi Orou, R. Yamapi, P. Woafo, Nonlinear dynamics and strange attractors in the biological system. Chaos Solitons Fractals 32, 862 (2007) · Zbl 1138.37050
[10] Ghosh, P.; Sen, S.; Riaz, SS; Ray, DS, Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback, Phys. Rev. E, 83, 3, 2011 · doi:10.1103/PhysRevE.83.036205
[11] Biswas, D.; Banerjee, T.; Kurths, J., Control of birhythmicity through conjugate self-feedback: theory and experiment, Phys. Rev. E, 94, 2016 · doi:10.1103/PhysRevE.94.042226
[12] Biswas, D.; Banerjee, T.; Kurths, J., Effect of filtered feedback on birhythmicity: suppression of birhythmic oscillation, Phys. Rev. E, 99, 2019 · doi:10.1103/PhysRevE.99.062210
[13] Ma, Z.; Ning, L., Bifurcation regulations governed by delay self-control feedback in a stochastic birhythmic system, Int. J. Bifurc. Chaos, 27, 1750202, 2017 · Zbl 1382.34085 · doi:10.1142/S0218127417502029
[14] Guo, Q.; Sun, Z.; Xu, W., Bifurcations in a fractional birhythmic biological system with time delay, Commun. Nonlinear Sci. Numer. Simul., 72, 318, 2019 · Zbl 1464.92016 · doi:10.1016/j.cnsns.2018.12.019
[15] Sun, Y.; Ning, L., Bifurcation analysis of a self-sustained birhythmic oscillator under two delays and colored noises, Int. J. Bifurc. Chaos, 30, 2050013, 2020 · Zbl 1436.34073 · doi:10.1142/S0218127420500133
[16] Saha, S.; Chakraborty, S.; Gangopadhyay, G., Suppressing birhythmicity by parametrically modulating nonlinearity in limit cycle oscillators, Physica D, 416, 2021 · Zbl 1493.34201 · doi:10.1016/j.physd.2020.132793
[17] Kirrou, I.; Belhaq, M., Control of bistability in non-contact mode atomic force microscopy using modulated time delay, Nonlinear Dyn., 81, 607, 2015 · doi:10.1007/s11071-015-2014-4
[18] Belhaq, M.; Hamdi, M., Energy harvesting from quasi-periodic vibrations, Nonlinear Dyn., 86, 2193, 2016 · Zbl 1452.70019 · doi:10.1007/s11071-016-2668-6
[19] Hamdi, M.; Belhaq, M., Quasi-periodic vibrations in a delayed van der Pol oscillator with time-periodic delay amplitude, J. Vib. Control, 24, 57265734, 2015
[20] N. Krylov, N.N. Bogoliubov, Introduction to Non-linear Mechanics (Princeton University, 1943) · Zbl 0063.03382
[21] Virkus, S.; Rand, R., The dynamics of two coupled van der Pol oscillators with delay coupling, Nonlinear Dyn., 30, 205, 2002 · Zbl 1021.70010 · doi:10.1023/A:1020536525009
[22] Shampine, LF; Thompson, S., Appl. Numer. Math., 37, 441, 2000 · Zbl 0983.65079 · doi:10.1016/S0168-9274(00)00055-6
[23] Belhaq, M.; Houssni, M., Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations, Nonlinear Dyn., 18, 1, 1999 · Zbl 0969.70017 · doi:10.1023/A:1008315706651
[24] Nayfeh, H.; Mook, DT, Nonlinear Oscillations, 1979, New York: Wiley, New York · Zbl 0418.70001
[25] Nayfeh, AH; Balachandran, B., Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, 2008, London: Wiley, London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.