×

Effective mass theorems with Bloch modes crossings. (English) Zbl 1502.81032

Summary: We study a Schrödinger equation modeling the dynamics of an electron in a crystal in the asymptotic regime of small wave-length comparable to the characteristic scale of the crystal. Using Floquet Bloch decomposition, we obtain a description of the limit of time averaged energy densities. We make a rather general assumption assuming that the initial data are uniformly bounded in a high order Sobolev spaces and that the crossings between Bloch modes are at worst conical. We show that despite the singularity they create, conical crossing do not trap the energy and do not prevent dispersion. We also investigate the interactions between modes that can occurred when there are some degenerate crossings between Bloch bands.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
82D25 Statistical mechanics of crystals
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V10 Electromagnetic interaction; quantum electrodynamics
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
30H30 Bloch spaces

References:

[1] Allaire, G., Palombaro, M.: Localization for the Schrödinger equation in a locally periodic medium. SIAM J. Math. Anal.38(1), 127-142, 2006 (electronic) · Zbl 1302.35034
[2] Allaire, G.; Piatnitski, A., Homogenization of the Schrödinger equation and effective mass theorems, Commun. Math. Phys., 258, 1, 1-22 (2005) · Zbl 1081.35092 · doi:10.1007/s00220-005-1329-2
[3] Anantharaman, N.; Fermanian-Kammerer, C.; Macià, F., Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures, Am. J. Math., 137, 3, 577-638 (2015) · Zbl 1319.35207 · doi:10.1353/ajm.2015.0020
[4] Anantharaman, N.; Léautaud, M.; Macià, F., Winger measures and observability for the Schrödinger equation on the disk, Invent. Math., 206, 2, 485-599 (2016) · Zbl 1354.35125 · doi:10.1007/s00222-016-0658-4
[5] Anantharaman, N., Macià, F.: The dynamics of the Schrödinger flow from the point of view of semiclassical measures. In Spectral geometry, volume 84 of Proc. Sympos. Pure Math., pp. 93-116. Amer. Math. Soc., Providence, RI, 2012 · Zbl 1317.53080
[6] Anantharaman, N.; Macià, F., Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS), 16, 6, 1253-1288 (2014) · Zbl 1298.42028 · doi:10.4171/JEMS/460
[7] Barletti, L.; Abdallah, NB, Quantum transport in crystals: effective mass theorem and k \(\cdot\) p Hamiltonians, Commun. Math. Phys., 307, 3, 567-607 (2011) · Zbl 1247.82067 · doi:10.1007/s00220-011-1344-4
[8] Bechouche, P.; Mauser, NJ; Poupaud, F., Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Commun. Pure Appl. Math., 54, 7, 851-890 (2001) · Zbl 1031.81024 · doi:10.1002/cpa.3004
[9] Bensoussan, A.; Lions, J-L; Papanicolaou, G., Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications (1978), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0404.35001
[10] Borg, G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math., 78, 1-96, 1946 · Zbl 0063.00523
[11] Boulkhemair, A., \(L^2\) estimates for Weyl quantization, J. Funct. Anal., 165, 1, 173-204 (1999) · Zbl 0934.35217 · doi:10.1006/jfan.1999.3423
[12] Calderón, A-P; Vaillancourt, R., On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, 23, 374-378 (1971) · Zbl 0203.45903 · doi:10.2969/jmsj/02320374
[13] Carles, R.; Sparber, C., Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials, Discrete Contin. Dyn. Syst. Ser. B, 17, 3, 759-774 (2012) · Zbl 1238.81120
[14] Chabu, V., Fermanian-Kammerer, C., Macià, F.: Semiclassical analysis of dispersion phenomena. In Analysis and partial differential equations: perspectives from developing countries, volume 275 of Springer Proc. Math. Stat., pp. 84-108. Springer, Cham, 2019 · Zbl 1414.35189
[15] Chabu, V., Fermanian-Kammerer, C., Macià, F.: Wigner measures and effective mass theorems. Annales Henri Lebesgue, 2020 (to appear) · Zbl 1452.35018
[16] Colin de Verdière, Y.: The level crossing problem in semi-classical analysis I. The symmetric case, proceedings of the international conference in honor of Frédéric Pham (Nice, 2002), Ann. Inst. Fourier (Grenoble)53(4), 1023-1054, 2003 · Zbl 1113.35151
[17] Colin de Verdière, Y.: The level crossing problem in semi-classical analysis II, The hermitian case. Ann. Inst. Fourier 54(5), 1423-1441, 2004 · Zbl 1067.35162
[18] Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit, vol. 268. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1999 · Zbl 0926.35002
[19] Drouot, A., The bulk-edge correspondence for continuous honeycomb lattices, Commun. PDEs, 44, 12, 1406-1430 (2019) · Zbl 1428.82009 · doi:10.1080/03605302.2019.1643362
[20] Drouot, A.; Weinstein, M., Edge states and the Valley Hall Effect, Adv. Math., 368, 107-142 (2020) · Zbl 1442.82003 · doi:10.1016/j.aim.2020.107142
[21] Fermanian Kammerer, C.: Propagation and absorption of concentration effects near shock hypersurfaces for the heat equation. Asymptot. Anal.24(2), 107-141, 2000 · Zbl 0979.35058
[22] Fermanian-Kammerer, C.: Mesures semi-classiques 2-microlocales. C. R. Acad. Sci. Paris Sér. I Math., 331(7), 515-518, 2000 · Zbl 0964.35009
[23] Fermanian Kammerer, C.: Semiclassical analysis of generic codimension 3 crossings. Int. Math. Res. Not.45, 2391-2435, 2004 · Zbl 1098.81038
[24] Fermanian Kammerer, C.: Analyse à deux échelles d’une suite bornée de \(L^2\) sur une sous-variété du cotangent. C. R. Math. Acad. Sci. Paris340(4), 269-274, 2005 · Zbl 1067.35083
[25] Fermanian-Kammerer, C.: Opérateurs pseudo-différentiels semi-classiques. In Chaos en mécanique quantique, pp. 53-100. Ed. Éc. Polytech., Palaiseau, 2014 · Zbl 1346.81045
[26] Fermanian Kammerer, C., Gérard, P.: Mesures semi-classiques et croisements de modes. Bull. Soc. Math. Fr.130(1), 123-168, 2002 · Zbl 0996.35004
[27] Fermanian Kammerer, C., Gérard, P.: A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincaré, 4, 513-552 (2003) · Zbl 1049.81029
[28] Fermanian-Kammerer, C.; Gérard, P.; Lasser, C., Wigner measure propagation and conical singularity for general initial data, Arch. Ration. Mech. Anal., 209, 1, 209-236 (2013) · Zbl 1288.35408 · doi:10.1007/s00205-013-0622-z
[29] Fermanian Kammerer, C., Lasser, C.: Propagation through generic level crossings: a surface hopping semigroup. SIAM J. Math. Anal.140(1), 103-133, 2008 · Zbl 1168.35043
[30] Fermanian Kammerer, C., Lasser, C.: An Egorov theorem for avoided crossings of eigenvalue surfaces. Commun. Math. Phys.353(3), 1011-1057, 2017 · Zbl 1375.35428
[31] Fermanian Kammerer, C., Méhats, F.: A kinetic model for the transport of electrons in a graphene layer. J. Comput. Phys. 327 (2016) · Zbl 1373.81432
[32] Filonov, N.; Kachkovskiy, I., On the structure of band edges of 2-dimensional periodic elliptic operators, Acta Math., 221, 1, 59-80 (2018) · Zbl 1407.35072 · doi:10.4310/ACTA.2018.v221.n1.a2
[33] Gårding, L., Dirichlet’s problem for linear elliptic partial differential equations, Math. Scand., 1, 55-72 (1953) · Zbl 0053.39101 · doi:10.7146/math.scand.a-10364
[34] Gérard, P.: Mesures semi-classiques et ondes de Bloch. In Séminaire sur les Équations aux Dérivées Partielles, 1990-1991, pages Exp. No. XVI, 19. École Polytech., Palaiseau, 1991 · Zbl 0739.35096
[35] Gérard, P.; Leichtnam, É., Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., 71, 2, 559-607 (1993) · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0
[36] Hagedorn, GA, Molecular Propagation through Electron Energy Level Crossings, Memoirs of the A. M. S., 111, 536 (1994) · Zbl 0833.92025
[37] Hoefer, MA; Weinstein, MI, Defect modes and homogenization of periodic Schrödinger operators, SIAM J. Math. Anal., 43, 2, 971-996 (2011) · Zbl 1242.35032 · doi:10.1137/100807302
[38] Hövermann, F.; Spohn, H.; Teufel, S., Semiclassical limit for the Schrödinger equation with a short scale periodic potential, Comm. Math. Phys., 215, 3, 609-629 (2001) · Zbl 1052.81039 · doi:10.1007/s002200000314
[39] Kuchment, P., An overview of periodic elliptic operators, Bull. Amer. Math. Soc. (N.S.), 53, 3, 343-414 (2016) · Zbl 1346.35170 · doi:10.1090/bull/1528
[40] Lions, P-L; Paul, T., Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9, 3, 553-618 (1993) · Zbl 0801.35117 · doi:10.4171/RMI/143
[41] Macià, F., Semiclassical measures and the Schrödinger flow on Riemannian manifolds, Nonlinearity, 22, 5, 1003-1020 (2009) · Zbl 1166.81020 · doi:10.1088/0951-7715/22/5/005
[42] Macià, F., High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal., 258, 3, 933-955 (2010) · Zbl 1180.35438 · doi:10.1016/j.jfa.2009.09.020
[43] Macià, F.: The Schrödinger flow on a compact manifold: High-frequency dynamics and dispersion. In Modern Aspects of the Theory of Partial Differential Equations, volume 216 of Oper. Theory Adv. Appl., pp. 275-289. Springer, Basel, 2011
[44] Macià, F.: High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability. In Nonlinear optical and atomic systems, volume 2146 of Lecture Notes in Math., pages 275-335. Springer, Cham, 2015 · Zbl 1337.35126
[45] Macià, F.; Rivière, G., Two-microlocal regularity of quasimodes on the torus, Anal. PDE, 11, 8, 2111-2136 (2018) · Zbl 1432.58028 · doi:10.2140/apde.2018.11.2111
[46] Magnus, W., Winkler, S.: Hill’s equation. Interscience Publishers [John Wiley and Sons], New York, 1966 · Zbl 0158.09604
[47] McKean, HP; Trubowitz, E., Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Commun. Pure Appl. Math., 29, 2, 143-226 (1976) · Zbl 0339.34024 · doi:10.1002/cpa.3160290203
[48] McKean, HP; van Moerbeke, P., The spectrum of Hill’s equation, Invent. Math., 30, 3, 217-274 (1975) · Zbl 0319.34024 · doi:10.1007/BF01425567
[49] Miller, L.: Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales. PhD thesis, École Polytechnique, Palaiseau, 1996
[50] Nier, F., A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4), 29, 2, 149-183 (1996) · Zbl 0858.35106 · doi:10.24033/asens.1738
[51] Panati, G.; Spohn, H.; Teufel, S., Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys., 242, 3, 547-578 (2003) · Zbl 1058.81020 · doi:10.1007/s00220-003-0950-1
[52] Poupaud, F.; Ringhofer, C., Semi-classical limits in a crystal with exterior potentials and effective mass theorems, Commun. Partial Differ. Equ., 21, 11-12, 1897-1918 (1996) · Zbl 0885.35105 · doi:10.1080/03605309608821248
[53] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978 · Zbl 0401.47001
[54] Sparber, C., Effective mass theorems for nonlinear Schrödinger equations, SIAM J. Appl. Math., 66, 3, 820-842 (2006) · Zbl 1099.35136 · doi:10.1137/050623759
[55] Watson, A.; Weinstein, MI, Wavepackets in inhomogeneous periodic media: propagation through a one-dimensional band crossing, Commun. Math. Phys., 363, 2, 655-698 (2018) · Zbl 1400.81103 · doi:10.1007/s00220-018-3213-x
[56] Wilcox, CH, Theory of Bloch waves, J. Analyse Math., 33, 146-167 (1978) · Zbl 0408.35067 · doi:10.1007/BF02790171
[57] Zworski, M.: Semiclassical analysis, vol. 138. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2012) · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.