×

Challenges and opportunities concerning numerical solutions for population balances: a critical review. (English) Zbl 1519.65028

Summary: Population balance models are tools for the study of dispersed systems, such as granular materials, polymers, colloids and aerosols. They are applied with increasing frequency across a wide range of disciplines, including chemical engineering, aerosol physics, astrophysics, polymer science, pharmaceutical sciences, and mathematical biology. Population balance models are used to track particle properties and their changes due to aggregation, fragmentation, nucleation and growth, processes that directly affect the distribution of particle sizes. The population balance equation is an integro-partial differential equation whose domain is the line of positive real numbers. This poses challenges for the stability and accuracy of the numerical methods used to solve for size distribution function and in response to these challenges several different methodologies have been developed in the literature. This review provides a critical presentation of the state of the art in numerical approaches for solving these complex models with emphasis in the algorithmic details that distinguish each methodology. The review covers finite volume methods, Monte Carlo method and sectional methods; the method of moments, another important numerical methodology, is not covered in this review.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
45K05 Integro-partial differential equations

References:

[1] Aamir, E.; Nagy, Z. K.; Rielly, C. D.; Kleinert, T.; Judat, B., Combined quadrature method of moments and method of characteristics approach for efficient solution of population balance models for dynamic modeling and crystal size distribution control of crystallization processes, Ind. Eng. Chem. Res., 48, 8575-8584 (2009) · doi:10.1021/ie900430t
[2] Ahamed, F.; Singh, M.; Song, H-S; Doshi, P.; Ooi, C. W.; Ho, Y. K., On the use of sectional techniques for the solution of depolymerization population balances: results on a discrete-continuous mesh, Adv. Powder Technol., 31, 2669-2679 (2020) · doi:10.1016/j.apt.2020.04.032
[3] Ahmed, N.; Matthies, G.; Tobiska, L., Finite element methods of an operator splitting applied to population balance equations, J. Comput. Appl. Math., 236, 1604-1621 (2011) · Zbl 1242.65199 · doi:10.1016/j.cam.2011.09.025
[4] Ahmed, N.; Matthies, G.; Tobiska, L., Stabilized finite element discretization applied to an operator-splitting method of population balance equations, Appl. Numer. Math., 70, 58-79 (2013) · Zbl 1382.65304 · doi:10.1016/j.apnum.2013.04.001
[5] Aldous, D. J., Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilities, Bernoulli, 5, 3-48 (1999) · Zbl 0930.60096 · doi:10.2307/3318611
[6] Amini, H., A semi-theoretical model for simulating the temporal evolution of moisture-temperature during industrial fluidized bed granulation, Eur. J. Pharm. Biopharm., 151, 137-152 (2020) · doi:10.1016/j.ejpb.2020.03.014
[7] Attarakih, M.; Jaradat, M.; Drumm, C.; Bart, H.; Tiwari, S.; Sharma, V.; Kuhnert, J.; Klar, A., A multivariate sectional quadrature method of moments for the solution of the population balance equation, Comput. Aid. Chem. Eng., 28, 1551-1556 (2010)
[8] Attarakih, M. M.; Drumm, C.; Bart, H-J, Solution of the population balance equation using the sectional quadrature method of moments (SQMOM), Chem. Eng. Sci., 64, 742-752 (2009) · doi:10.1016/j.ces.2008.05.006
[9] Bal, V.; Peters, B., Coupled population balance and species balance models of crystallization: analytic solutions and data fits, Cryst. Growth Des., 21, 227-234 (2020) · doi:10.1021/acs.cgd.0c01047
[10] Barrasso, D.; Eppinger, T.; Pereira, F. E.; Aglave, R.; Debus, K.; Bermingham, S. K.; Ramachandran, R., A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBM-DEM coupling algorithm, Chem. Eng. Sci., 123, 500-513 (2015) · doi:10.1016/j.ces.2014.11.011
[11] Barrasso, D.; Walia, S.; Ramachandran, R., Multi-component population balance modeling of continuous granulation processes: a parametric study and comparison with experimental trends, Powder Technol., 241, 85-97 (2013) · doi:10.1016/j.powtec.2013.03.001
[12] Bourgade, J. P.; Filbet, F., Convergence of a finite volume scheme for coagulation-fragmentation equations, Math. Comput., 77, 851-882 (2008) · Zbl 1140.82032 · doi:10.1090/S0025-5718-07-02054-6
[13] Braumann, A.; Kraft, M.; Wagner, W., Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation, J. Comput. Phys., 229, 7672-7691 (2010) · Zbl 1425.74124 · doi:10.1016/j.jcp.2010.06.021
[14] Buddhiraju, V. S.; Runkana, V., Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics-monodisperse population balance model, J. Aerosol Sci., 43, 1-13 (2012) · doi:10.1016/j.jaerosci.2011.08.007
[15] Chaudhury, A.; Kapadia, A.; Prakash, A. V.; Barrasso, D.; Ramachandran, R., An extended cell-average technique for a multi-dimensional population balance of granulation describing aggregation and breakage, Adv. Powder Technol., 24, 962-971 (2013) · doi:10.1016/j.apt.2013.01.006
[16] Chaudhury, A.; Oseledets, I.; Ramachandran, R., A computationally efficient technique for the solution of multi-dimensional PBMS of granulation via tensor decomposition, Comput. Chem. Eng., 61, 234-244 (2014) · doi:10.1016/j.compchemeng.2013.10.020
[17] Chaudhury, A.; Wu, H.; Khan, M.; Ramachandran, R., A mechanistic population balance model for granulation processes: effect of process and formulation parameters, Chem. Eng. Sci., 107, 76-92 (2014) · doi:10.1016/j.ces.2013.11.031
[18] Chauhan, S. S.; Chakraborty, J.; Kumar, S., On the solution and applicability of bivariate population balance equations for mixing in particle phase, Chem. Eng. Sci., 65, 3914-3927 (2010) · doi:10.1016/j.ces.2010.03.021
[19] Chauhan, S. S.; Chiney, A.; Kumar, S., On the solution of bivariate population balance equations for aggregation: X-discretization of space for expansion and contraction of computational domain, Chem. Eng. Sci., 70, 135-145 (2012) · doi:10.1016/j.ces.2011.10.005
[20] Chen, C-M; Higgs, P. G., Monte-Carlo simulations of polymer crystallization in dilute solution, J. Chem. Phys., 108, 4305-4314 (1998) · doi:10.1063/1.475830
[21] Chen, Z.; Prüss, J.; Warnecke, H-J, A population balance model for disperse systems, Chem. Eng. Sci., 53, 1059-1066 (1998) · doi:10.1016/s0009-2509(97)00328-x
[22] Costa, C. B B.; Maciel, M. R W.; Filho, R. M., Considerations on the crystallization modeling: population balance solution, Comput. Chem. Eng., 31, 206-218 (2007) · doi:10.1016/j.compchemeng.2006.06.005
[23] Curl, R. L., Dispersed phase mixing: I. Theory and effects in simple reactors, AIChE J., 9, 175-181 (1963) · doi:10.1002/aic.690090207
[24] Das, P. K., Monte Carlo simulation of drop breakage on the basis of drop volume, Comput. Chem. Eng., 20, 307-313 (1996) · doi:10.1016/0098-1354(95)00017-8
[25] Dorao, C. A.; Jakobsen, H. A., Numerical calculation of the moments of the population balance equation, J. Comput. Appl. Math., 196, 619-633 (2006) · Zbl 1099.65134 · doi:10.1016/j.cam.2005.10.015
[26] Dorao, C. A.; Jakobsen, H. A., HP-adaptive least squares spectral element method for population balance equations, Appl. Numer. Math., 58, 563-576 (2008) · Zbl 1138.65110 · doi:10.1016/j.apnum.2006.12.005
[27] Farias, L. F.; de Souza, J. A.; Braatz, R. D.; da Rosa, C. A., Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using openfoam, Comput. Chem. Eng., 123, 246-256 (2019) · doi:10.1016/j.compchemeng.2019.01.009
[28] Fernández-Díaz, J. M.; Gómez-García, G. J., Exact solution of Smoluchowski’s continuous multi-component equation with an additive kernel, Europhys. Lett., 78, 56002 (2007) · Zbl 1244.82038 · doi:10.1209/0295-5075/78/56002
[29] Fernández-Díaz, J. M.; Gómez-García, G. J., Exact solution of a coagulation equation with a product kernel in the multicomponent case, Physica D, 239, 279-290 (2010) · Zbl 1183.82100 · doi:10.1016/j.physd.2009.11.010
[30] Filbet, F.; Laurençot, P., Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25, 2004-2028 (2004) · Zbl 1086.65123 · doi:10.1137/s1064827503429132
[31] Forestier-Coste, L.; Mancini, S., A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence, SIAM J. Sci. Comput., 34, B840-B860 (2012) · Zbl 1259.82054 · doi:10.1137/110847998
[32] Fysikopoulos, D.; Benyahia, B.; Borsos, A.; Nagy, Z. K.; Rielly, C. D., A framework for model reliability and estimability analysis of crystallization processes with multi-impurity multi-dimensional population balance models, Comput. Chem. Eng., 122, 275-292 (2019) · doi:10.1016/j.compchemeng.2018.09.007
[33] Ganesan, S., An operator-splitting Galerkin/SUPG finite element method for population balance equations: stability and convergence, ESAIM: M2an, 46, 1447-1465 (2012) · Zbl 1273.65143 · doi:10.1051/m2an/2012012
[34] Ganesan, S.; Tobiska, L., An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems, Chem. Eng. Sci., 69, 59-68 (2012) · doi:10.1016/j.ces.2011.09.031
[35] Garcia, A. L.; van den Broeck, C.; Aertsens, M.; Serneels, R., A Monte Carlo simulation of coagulation, Physica A, 143, 535-546 (1987) · doi:10.1016/0378-4371(87)90164-6
[36] Gelbard, F.; Seinfeld, J. H., Numerical solution of the dynamic equation for particulate systems, J. Comput. Phys., 28, 357-375 (1978) · Zbl 0389.65052 · doi:10.1016/0021-9991(78)90058-x
[37] Gillespie, D. T., An exact method for numerically simulating the stochastic coalescence process in a cloud, J. Atmos. Sci., 32, 1977-1989 (1975) · doi:10.1175/1520-0469(1975)032<1977:aemfns>2.0.co;2
[38] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 403-434 (1976) · doi:10.1016/0021-9991(76)90041-3
[39] van Peborgh Gooch, J. R.; Hounslow, M. J., Monte Carlo simulation of size-enlargement mechanisms in crystallization, AIChE J., 42, 1864-1874 (1996) · doi:10.1002/aic.690420708
[40] Hasseine, A.; Bart, H-J, Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes, Appl. Math. Model., 39, 1975-1984 (2015) · Zbl 1443.65271 · doi:10.1016/j.apm.2014.09.027
[41] Ho, Y. K.; Doshi, P.; Yeoh, H. K., Modelling simultaneous chain-end and random scissions using the fixed pivot technique, Can. J. Chem. Eng., 96, 800-814 (2018) · doi:10.1002/cjce.22957
[42] Ho, Y. K.; Doshi, P.; Yeoh, H. K.; Ngoh, G. C., Modeling chain-end scission using the fixed pivot technique, Chem. Eng. Sci., 116, 601-610 (2014) · doi:10.1016/j.ces.2014.05.035
[43] Ho, Y. K.; Kirse, C.; Briesen, H.; Singh, M.; Chan, C-H; Kow, K-W, Towards improved predictions for the enzymatic chain-end scission of natural polymers by population balances: the need for a non-classical rate kernel, Chem. Eng. Sci., 176, 329-342 (2018) · doi:10.1016/j.ces.2017.10.027
[44] Hounslow, M. J.; Ryall, R. L.; Marshall, V. R., A discretized population balance for nucleation, growth, and aggregation, AIChE J., 34, 1821-1832 (1988) · doi:10.1002/aic.690341108
[45] Hu, Q.; Rohani, S.; Jutan, A., New numerical method for solving the dynamic population balance equations, AIChE J., 51, 3000-3006 (2005) · doi:10.1002/aic.10585
[46] Hussain, M.; Kumar, J.; Peglow, M.; Tsotsas, E., On two-compartment population balance modeling of spray fluidized bed agglomeration, Comput. Chem. Eng., 61, 185-202 (2014) · doi:10.1016/j.compchemeng.2013.11.003
[47] Immanuel, C. D.; Doyle, F. J III, Computationally efficient solution of population balance models incorporating nucleation, growth and coagulation: application to emulsion polymerization, Chem. Eng. Sci., 58, 3681-3698 (2003) · doi:10.1016/s0009-2509(03)00216-1
[48] Irizarry, R., Fast compartmental Monte Carlo simulation of population balance models: application to nanoparticle formation in nonhomogeneous conditions, Ind. Eng. Chem. Res., 51, 15484-15496 (2012) · doi:10.1021/ie3011116
[49] Ismail, H. Y.; Singh, M.; Albadarin, A. B.; Walker, G. M., Complete two dimensional population balance modelling of wet granulation in twin screw, Int. J. Pharm., 591 (2020) · doi:10.1016/j.ijpharm.2020.120018
[50] Ismail, H. Y.; Singh, M.; Darwish, S.; Kuhs, M.; Shirazian, S.; Croker, D. M.; Khraisheh, M.; Albadarin, A. B.; Walker, G. M., Developing Ann-Kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation, Powder Technol., 343, 568-577 (2019) · doi:10.1016/j.powtec.2018.11.060
[51] Ismail, H. Y.; Singh, M.; Shirazian, S.; Albadarin, A. B.; Walker, G. M., Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation, Chem. Eng. Res. Des., 163, 320-326 (2020) · doi:10.1016/j.cherd.2020.09.002
[52] John, V.; Mitkova, T.; Roland, M.; Sundmacher, K.; Tobiska, L.; Voigt, A., Simulations of population balance systems with one internal coordinate using finite element methods, Chem. Eng. Sci., 64, 733-741 (2009) · doi:10.1016/j.ces.2008.05.004
[53] Kaur, G.; Singh, M.; Kumar, J.; De Beer, T.; Nopens, I., Mathematical modelling and simulation of a spray fluidized bed granulator, Processes, 6, 195 (2018) · doi:10.3390/pr6100195
[54] Kaur, G.; Singh, M.; Matsoukas, T.; Kumar, J.; De Beer, T.; Nopens, I., Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator, Appl. Math. Model., 68, 267-280 (2019) · doi:10.1016/j.apm.2018.11.028
[55] Kaur, G.; Singh, R.; Singh, M.; Kumar, J.; Matsoukas, T., Analytical approach for solving population balances: a homotopy perturbation method, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1504.92098 · doi:10.1088/1751-8121/ab2cf5
[56] Khalili, S.; Lin, Y.; Armaou, A.; Matsoukas, T., Constant number Monte Carlo simulation of population balances with multiple growth mechanisms, AIChE J., 56, 3137-3145 (2010) · doi:10.1002/aic.12233
[57] Kiparissides, C., Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective, J. Process Control, 16, 205-224 (2006) · doi:10.1016/j.jprocont.2005.06.004
[58] Kirse, C.; Briesen, H., Numerical solution of mixed continuous-discrete population balance models for depolymerization of branched polymers, Comput. Chem. Eng., 73, 154-171 (2015) · doi:10.1016/j.compchemeng.2014.11.008
[59] Kostoglou, M., Extended cell average technique for the solution of coagulation equation, J. Colloid Interface Sci., 306, 72-81 (2007) · doi:10.1016/j.jcis.2006.10.044
[60] Kostoglou, M.; Konstandopoulos, A. G.; Friedlander, S. K., Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring, J. Aerosol Sci., 37, 1102-1115 (2006) · doi:10.1016/j.jaerosci.2005.11.009
[61] Kostoglou, M.; Konstandopoulos, A. G., Evolution of aggregate size and fractal dimension during Brownian coagulation, J. Aerosol Sci., 32, 1399-1420 (2001) · doi:10.1016/s0021-8502(01)00056-8
[62] Kotalczyk, G.; Kruis, F. E., A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging, J. Comput. Phys., 340, 276-296 (2017) · doi:10.1016/j.jcp.2017.03.041
[63] Kotoulas, C.; Kiparissides, C., A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors, Chem. Eng. Sci., 61, 332-346 (2006) · doi:10.1016/j.ces.2005.07.013
[64] Kourti, N.; Schatz, A., Solution of the general dynamic equation (GDE) for multicomponent aerosols, J. Aerosol Sci., 29, 41-55 (1998) · doi:10.1016/s0021-8502(97)00466-7
[65] Kumar, A., Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation, Eur. J. Pharm. Sci., 71, 25-34 (2015) · doi:10.1016/j.ejps.2015.02.004
[66] Kumar, J., Numerical approximations of population balance equations in particulate systems, PhD Thesis (2006), Universitätsbibliothek
[67] Kumar, J.; Kaur, G.; Tsotsas, E., An accurate and efficient discrete formulation of aggregation population balance equation, Kinetic Relat. Models, 9, 373-391 (2016) · Zbl 1333.45008 · doi:10.3934/krm.2016.9.373
[68] Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S.; Mörl, L., Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique, Chem. Eng. Sci., 61, 3327-3342 (2006) · doi:10.1016/j.ces.2005.12.014
[69] Kumar, J.; Warnecke, G.; Peglow, M.; Heinrich, S., Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage, Powder Technol., 189, 218-229 (2009) · doi:10.1016/j.powtec.2008.04.014
[70] Kumar, R.; Kumar, J., Numerical simulation and convergence analysis of a finite volume scheme for solving general breakage population balance equations, Appl. Math. Comput., 219, 5140-5151 (2013) · Zbl 1377.65116 · doi:10.1016/j.amc.2012.10.098
[71] Kumar, R.; Kumar, J.; Warnecke, G., Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms, Math. Models Methods Appl. Sci., 23, 1235-1273 (2013) · Zbl 1269.65137 · doi:10.1142/s0218202513500085
[72] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization-II. A moving pivot technique, Chem. Eng. Sci., 51, 1333-1342 (1996) · doi:10.1016/0009-2509(95)00355-x
[73] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization-I. A fixed pivot technique, Chem. Eng. Sci., 51, 1311-1332 (1996) · doi:10.1016/0009-2509(96)88489-2
[74] Lage, P. L C., Comments on the an analytical solution to the population balance equation with coalescence and breakage—the special case with constant number of particles by D P Patil and J R G Andrews [chemical engineering science 53 599-601], Chem. Eng. Sci., 57, 4253-4254 (2002) · doi:10.1016/s0009-2509(02)00369-x
[75] Laurenzi, I. J.; Diamond, S. L., Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils, Biophys. J., 77, 1733-1746 (1999) · doi:10.1016/s0006-3495(99)77019-0
[76] Le Borne, S.; Shahmuradyan, L., Algorithms for the Haar wavelet based fast evaluation of aggregation integrals in population balance equations, Appl. Numer. Math., 108, 1-20 (2016) · Zbl 1346.65077 · doi:10.1016/j.apnum.2016.02.009
[77] Lee, K.; Kim, T.; Rajniak, P.; Matsoukas, T., Compositional distributions in multicomponent aggregation, Chem. Eng. Sci., 63, 1293-1303 (2008) · doi:10.1016/j.ces.2007.07.060
[78] Lee, K.; Matsoukas, T., Simultaneous coagulation and break-up using constant-N Monte Carlo, Powder Technol., 110, 82-89 (2000) · doi:10.1016/s0032-5910(99)00270-3
[79] Leyvraz, F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep., 383, 95-212 (2003) · doi:10.1016/s0370-1573(03)00241-2
[80] Liao, Y.; Oertel, R.; Kriebitzsch, S.; Schlegel, F.; Lucas, D., A discrete population balance equation for binary breakage, Int. J. Numer. Methods Fluids, 87, 202-215 (2018) · doi:10.1002/fld.4491
[81] Liffman, K., A direct simulation Monte-Carlo method for cluster coagulation, J. Comput. Phys., 100, 116-127 (1992) · doi:10.1016/0021-9991(92)90314-o
[82] Lin, Y.; Lee, K.; Matsoukas, T., Solution of the population balance equation using constant-number Monte Carlo, Chem. Eng. Sci., 57, 2241-2252 (2002) · doi:10.1016/s0009-2509(02)00114-8
[83] Lister, J. D.; Smit, D. J.; Hounslow, M. J., Adjustable discretized population balance for growth and aggregation, AIChE J., 41, 591-603 (1995) · doi:10.1002/aic.690410317
[84] Liu, H.; Li, M., Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis, Int. J. Pharm., 475, 256-269 (2014) · doi:10.1016/j.ijpharm.2014.08.057
[85] Liu, H.; O’Connor, T.; Lee, S.; Yoon, S., A process optimization strategy of a pulsed-spray fluidized bed granulation process based on predictive three-stage population balance model, Powder Technol., 327, 188-200 (2018) · doi:10.1016/j.powtec.2017.12.070
[86] Liu, Y. C.; Acevedo, D.; Yang, X.; Naimi, S.; Wu, W-L; Pavurala, N.; Nagy, Z. K.; O’Connor, T. F., Population balance model development verification and validation of cooling crystallization of carbamazepine, Cryst. Growth Des., 20, 5235-5250 (2020) · doi:10.1021/acs.cgd.0c00434
[87] Madec, L.; Falk, L.; Plasari, E., Simulation of agglomeration reactors via a coupled CFD/direct Monte-Carlo method, Chem. Eng. Sci., 56, 1731-1736 (2001) · doi:10.1016/s0009-2509(00)00402-4
[88] Maisels, A.; Kruis, F. E.; Fissan, H., Direct Monte Carlo simulations of coagulation and aggregation, J. Aerosol Sci., 30, S417-S418 (1999) · doi:10.1016/s0021-8502(99)80220-1
[89] Mantzaris, N. V., Stochastic and deterministic simulations of heterogeneous cell population dynamics, J. Theor. Biol., 241, 690-706 (2006) · Zbl 1447.92123 · doi:10.1016/j.jtbi.2006.01.005
[90] Marchal, P.; David, R.; Klein, J. P.; Villermaux, J., Crystallization and precipitation engineering-I. An efficient method for solving population balance in crystallization with agglomeration, Chem. Eng. Sci., 43, 59-67 (1988) · doi:10.1016/0009-2509(88)87126-4
[91] Marchisio, D. L.; Fox, R. O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 43-73 (2005) · doi:10.1016/j.jaerosci.2004.07.009
[92] Marchisio, D. L.; Pikturna, J. T.; Fox, R. O.; Vigil, R. D.; Barresi, A. A., Quadrature method of moments for population-balance equations, AIChE J., 49, 1266-1276 (2003) · doi:10.1002/aic.690490517
[93] Marshall, C. L.; Rajniak, P.; Matsoukas, T., Multi-component population balance modeling of granulation with continuous addition of binder, Powder Technol., 236, 211-220 (2013) · doi:10.1016/j.powtec.2012.01.027
[94] Marshall, C. L Jr; Rajniak, P.; Matsoukas, T., Numerical simulations of two-component granulation: comparison of three methods, Chem. Eng. Res. Des., 89, 545-552 (2011) · doi:10.1016/j.cherd.2010.06.003
[95] Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E., A fast numerical method for the Cauchy problem for the Smoluchowski equation, J. Comput. Phys., 282, 23-32 (2015) · Zbl 1352.65250 · doi:10.1016/j.jcp.2014.11.003
[96] Matveev, S. A.; Zheltkov, D. A.; Tyrtyshnikov, E. E.; Smirnov, A. P., Tensor train versus Monte Carlo for the multicomponent Smoluchowski coagulation equation, J. Comput. Phys., 316, 164-179 (2016) · Zbl 1349.82099 · doi:10.1016/j.jcp.2016.04.025
[97] McQuarrie, D. A.; Jachimowski, C. J.; Russell, M. E., Kinetics of small systems: II, J. Chem. Phys., 40, 2914-2921 (1964) · doi:10.1063/1.1724926
[98] Mersmann, A., Crystallization Technology Handbook (2001), Boca Raton, FL: CRC Press, Boca Raton, FL
[99] Montroll, E. W.; Simha, R., Theory of depolymerization of long chain molecules, J. Chem. Phys., 8, 721-726 (1940) · doi:10.1063/1.1750807
[100] Mosbach, S.; Celnik, M. S.; Raj, A.; Kraft, M.; Zhang, H. R.; Kubo, S.; Kim, K-O, Towards a detailed soot model for internal combustion engines, Combust. Flame, 156, 1156-1165 (2009) · doi:10.1016/j.combustflame.2009.01.003
[101] Nandanwar, M. N.; Kumar, S., A new discretization of space for the solution of multi-dimensional population balance equations: simultaneous breakup and aggregation of particles, Chem. Eng. Sci., 63, 3988-3997 (2008) · doi:10.1016/j.ces.2008.04.054
[102] Nguyen, T. T.; Laurent, F.; Fox, R. O.; Massot, M., Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes, J. Comput. Phys., 325, 129-156 (2016) · Zbl 1375.76204 · doi:10.1016/j.jcp.2016.08.017
[103] Osinsky, A. I., Low-rank method for fast solution of generalized Smoluchowski equations, J. Comput. Phys., 422 (2020) · Zbl 07508387 · doi:10.1016/j.jcp.2020.109764
[104] Oullion, M.; Reynolds, G. K.; Hounslow, M. J., Simulating the early stage of high-shear granulation using a two-dimensional Monte-Carlo approach, Chem. Eng. Sci., 64, 673-685 (2009) · doi:10.1016/j.ces.2008.08.014
[105] Patil, D. P.; Andrews, J. R G., An analytical solution to continuous population balance model describing FLOC coalescence and breakage—a special case, Chem. Eng. Sci., 53, 599-601 (1998) · doi:10.1016/s0009-2509(97)00314-x
[106] Peglow, M.; Kumar, J.; Mörl, L., Investigation of coalescence kinetics of microcristalline cellulose in fluidised bed spray agglomeration: experimental studies and modelling approach, Braz. J. Chem. Eng., 22, 165-172 (2005) · doi:10.1590/s0104-66322005000200002
[107] Pigou, M.; Morchain, J.; Fede, P.; Penet, M-I; Laronze, G., New developments of the extended quadrature method of moments to solve population balance equations, J. Comput. Phys., 365, 243-268 (2018) · Zbl 1396.65079 · doi:10.1016/j.jcp.2018.03.027
[108] Qamar, S.; Angelov, I.; Elsner, M. P.; Ashfaq, A.; Seidel-Morgenstern, A.; Warnecke, G., Numerical approximations of a population balance model for coupled batch preferential crystallizers, Appl. Numer. Math., 59, 739-753 (2009) · Zbl 1167.82020 · doi:10.1016/j.apnum.2008.03.033
[109] Qamar, S.; Warnecke, G., Numerical solution of population balance equations for nucleation, growth and aggregation processes, Comput. Chem. Eng., 31, 1576-1589 (2007) · doi:10.1016/j.compchemeng.2007.01.006
[110] Qamar, S.; Warnecke, G.; Elsner, M. P., On the solution of population balances for nucleation, growth, aggregation and breakage processes, Chem. Eng. Sci., 64, 2088-2095 (2009) · doi:10.1016/j.ces.2009.01.040
[111] Raj, A.; Celnik, M.; Shirley, R.; Sander, M.; Patterson, R.; West, R.; Kraft, M., A statistical approach to develop a detailed soot growth model using PAH characteristics, Combust. Flame, 156, 896-913 (2009) · doi:10.1016/j.combustflame.2009.01.005
[112] Rajamani, K.; Pate, W. T.; Kinneberg, D. J., Time-driven and event-driven Monte Carlo simulations of liquid-liquid dispersions: a comparison, Ind. Eng. Chem. Fund., 25, 746 (1986) · doi:10.1021/i100024a045
[113] Ramkrishna, D.; Mahoney, A. W., Population balance modeling. promise for the future, Chem. Eng. Sci., 57, 595-606 (2002) · doi:10.1016/s0009-2509(01)00386-4
[114] Rigopoulos, S.; Jones, A. G., Finite-element scheme for solution of the dynamic population balance equation, AIChE J., 49, 1127-1139 (2003) · doi:10.1002/aic.690490507
[115] Rosner, D. E.; McGraw, R.; Tandon, P., Multivariate population balances via moment and Monte Carlo simulation methods: an important sol reaction engineering bivariate example and mixed moments for the estimation of deposition, scavenging, and optical properties for populations of nonspherical suspended particles, Ind. Eng. Chem. Res., 42, 2699-2711 (2003) · doi:10.1021/ie020627l
[116] Rosner, D. E.; Yu, S., MC simulation of aerosol aggregation and simultaneous spheroidization, AIChE J., 47, 545-561 (2001) · doi:10.1002/aic.690470305
[117] Saha, J.; Bück, A., Conservative finite volume schemes for multidimensional fragmentation problems, Mathematics, 9, 635 (2021) · doi:10.3390/math9060635
[118] Saha, J.; Das, N.; Das, N.; Kumar, J.; Bück, A., Numerical solutions for multidimensional fragmentation problems using finite volume methods, Kinetic Relat. Models, 12, 79 (2019) · Zbl 1407.45007 · doi:10.3934/krm.2019004
[119] Saha, J.; Kumar, J.; Bück, A.; Tsotsas, E., Finite volume approximations of breakage population balance equation, Chem. Eng. Res. Des., 110, 114-122 (2016) · doi:10.1016/j.cherd.2016.02.012
[120] Scott, W. T., Analytic studies of cloud droplet coalescence I, J. Atmos. Sci., 25, 54-65 (1968) · doi:10.1175/1520-0469(1968)025<0054:asocdc>2.0.co;2
[121] Seem, T. C.; Rowson, N. A.; Ingram, A.; Huang, Z.; Yu, S.; de Matas, M.; Gabbott, I.; Reynolds, G. K., Twin screw granulation—a literature review, Powder Technol., 276, 89-102 (2015) · doi:10.1016/j.powtec.2015.01.075
[122] Shekar, S.; Smith, A. J.; Menz, W. J.; Sander, M.; Kraft, M., A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, J. Aerosol Sci., 44, 83-98 (2012) · doi:10.1016/j.jaerosci.2011.09.004
[123] Shirazian, S.; Ismail, H. Y.; Singh, M.; Shaikh, R.; Croker, D. M.; Walker, G. M., Multi-dimensional population balance modelling of pharmaceutical formulations for continuous twin-screw wet granulation: determination of liquid distribution, Int. J. Pharm., 566, 352-360 (2019) · doi:10.1016/j.ijpharm.2019.06.001
[124] Simha, R., Kinetics of degradation and size distribution of long chain polymers, J. Appl. Phys., 12, 569-578 (1941) · doi:10.1063/1.1712939
[125] Simha, R., On the degradation of branched chain molecules, J. Chem. Phys., 24, 796-802 (1956) · doi:10.1063/1.1742612
[126] Singh, M., Accurate and efficient approximations for generalized population balances incorporating coagulation and fragmentation, J. Comput. Phys., 435 (2021) · Zbl 07503721 · doi:10.1016/j.jcp.2021.110215
[127] Singh, M., New finite volume approach for multidimensional Smoluchowski equation on nonuniform grids, Stud. Appl. Math., 147, 955-977 (2021) · Zbl 07415606 · doi:10.1111/sapm.12415
[128] Singh, M.; Chakraborty, J.; Kumar, J.; Ramakanth, R., Accurate and efficient solution of bivariate population balance equations using unstructured grids, Chem. Eng. Sci., 93, 1-10 (2013) · doi:10.1016/j.ces.2013.01.039
[129] Singh, M.; Ghosh, D.; Kumar, J., A comparative study of different discretizations for solving bivariate aggregation population balance equation, Appl. Math. Comput., 234, 434-451 (2014) · Zbl 1298.65154 · doi:10.1016/j.amc.2014.02.052
[130] Singh, M.; Ismail, H. Y.; Matsoukas, T.; Albadarin, A. B.; Walker, G., Mass-based finite volume scheme for aggregation, growth and nucleation population balance equation, Proc. R. Soc. A, 475, 20190552 (2019) · Zbl 1472.82044 · doi:10.1098/rspa.2019.0552
[131] Singh, M.; Ismail, H. Y.; Singh, R.; Albadarin, A. B.; Walker, G., Finite volume approximation of nonlinear agglomeration population balance equation on triangular grid, J. Aerosol Sci., 137 (2019) · doi:10.1016/j.jaerosci.2019.105430
[132] Singh, M.; Kaur, G., Convergence analysis of finite volume scheme for nonlinear aggregation population balance equation, Math. Methods Appl. Sci., 42, 3236-3254 (2019) · Zbl 1416.65298 · doi:10.1002/mma.5581
[133] Singh, M.; Kaur, G.; De Beer, T.; Nopens, I., Solution of bivariate aggregation population balance equation: a comparative study, Reac. Kinet. Mech. Cat., 123, 385-401 (2018) · doi:10.1007/s11144-018-1345-9
[134] Singh, M.; Kaur, G.; Kumar, J.; De Beer, T.; Nopens, I., A comparative study of numerical approximations for solving the Smoluchowski coagulation equation, Braz. J. Chem. Eng., 35, 1343-1354 (2018) · doi:10.1590/0104-6632.20180354s20170050
[135] Singh, M.; Kumar, J.; Bück, A.; Tsotsas, E., A volume-consistent discrete formulation of aggregation population balance equations, Math. Methods Appl. Sci., 39, 2275-2286 (2015) · Zbl 1338.35453 · doi:10.1002/mma.3638
[136] Singh, M.; Kumar, J.; Bück, A.; Tsotsas, E., An improved and efficient finite volume scheme for bivariate aggregation population balance equation, J. Comput. Appl. Math., 308, 83-97 (2016) · Zbl 1382.65271 · doi:10.1016/j.cam.2016.04.037
[137] Singh, M.; Matsoukas, T.; Ranade, V.; Walker, G., Discrete finite volume formulation for multidimensional fragmentation equation and its convergence analysis, J. Comput. Phys., 464 (2022) · Zbl 07540382 · doi:10.1016/j.jcp.2022.111368
[138] Singh, M.; Matsoukas, T.; Walker, G., Two moments consistent discrete formulation for binary breakage population balance equation and its convergence, Appl. Numer. Math., 166, 76-91 (2021) · Zbl 07354415 · doi:10.1016/j.apnum.2021.04.001
[139] Singh, M.; Nayak, R.; Walker, G., Convergence analysis of volume preserving scheme for mass based coalescence equation, Appl. Numer. Math., 173, 365-379 (2021) · Zbl 1484.65195 · doi:10.1016/j.apnum.2021.12.012
[140] Singh, M.; Shirazian, S.; Ranade, V.; Walker, G. M.; Kumar, A., Challenges and opportunities in modelling wet granulation in pharmaceutical industry—a critical review, Powder Technol., 403 (2022) · doi:10.1016/j.powtec.2022.117380
[141] Singh, M.; Singh, R.; Singh, S.; Singh, G.; Walker, G., Finite volume approximation of multidimensional aggregation population balance equation on triangular grid, Math. Comput. Simul., 172, 191-212 (2020) · Zbl 1510.65223 · doi:10.1016/j.matcom.2019.12.009
[142] Singh, M.; Vuik, K.; Kaur, G.; Bart, H-J, Effect of different discretizations on the numerical solution of 2D aggregation population balance equation, Powder Technol., 342, 972-984 (2019) · doi:10.1016/j.powtec.2018.10.028
[143] Singh, M.; Walker, G., Finite volume approach for fragmentation equation and its mathematical analysis, Numer. Alg., 89, 465-486 (2022) · Zbl 07456985 · doi:10.1007/s11075-021-01122-9
[144] Singh, M.; Walker, G.; Randade, V., New formulations and convergence analysis for reduced tracer mass fragmentation model: an application to depolymerization, ESAIM: M2an, 56, 943-967 (2022) · Zbl 1505.65322 · doi:10.1051/m2an/2022023
[145] Skorych, V.; Dosta, M.; Hartge, E-U; Heinrich, S.; Ahrens, R.; Le Borne, S., Investigation of an FFT-based solver applied to dynamic flowsheet simulation of agglomeration processes, Adv. Powder Technol., 30, 555-564 (2019) · doi:10.1016/j.apt.2018.12.007
[146] Smith, M.; Matsoukas, T., Constant-number Monte Carlo simulation of population balances, Chem. Eng. Sci., 53, 1777-1786 (1998) · doi:10.1016/s0009-2509(98)00045-1
[147] Spielman, L. A.; Levenspiel, O., A Monte Carlo treatment for reacting and coalescing dispersed phase systems, Chem. Eng. Sci., 20, 247-254 (1965) · doi:10.1016/0009-2509(65)80035-5
[148] Sutugin, A. G.; Fuchs, N. A., Formation of condensation aerosols under rapidly changing environmental conditions, J. Aerosol Sci., 1, 287-293 (1970) · doi:10.1016/0021-8502(70)90002-9
[149] Tamrakar, A.; Ramachandran, R., CFD-DEM-PBM coupled model development and validation of a 3D top-spray fluidized bed wet granulation process, Comput. Chem. Eng., 125, 249-270 (2019) · doi:10.1016/j.compchemeng.2019.01.023
[150] Tandon, P.; Rosner, D. E., Monte Carlo simulation of particle aggregation and simultaneous restructuring, J. Colloid Interface Sci., 213, 273-286 (1999) · doi:10.1006/jcis.1998.6036
[151] Thaker, A. H.; Ranade, V. V., Drop breakage in a single-pass through vortex-based cavitation device: experiments and modeling, AIChE J. (2021) · doi:10.1002/aic.17512
[152] Thaker, A. H.; Ranade, V. V., Towards harnessing hydrodynamic cavitation for producing emulsions: breakage of an oil drop in a vortex based cavitation device, Chem. Eng. Process. (2021) · doi:10.1016/j.cep.2021.108753
[153] Tolfo, F., A simplified model of aerosol coagulation, J. Aerosol Sci., 8, 9-19 (1977) · doi:10.1016/0021-8502(77)90058-1
[154] Vale, H. M.; McKenna, T. F., Solution of the population balance equation for two-component aggregation by an extended fixed pivot technique, Ind. Eng. Chem. Res., 44, 7885-7891 (2005) · doi:10.1021/ie050179s
[155] Van Hauwermeiren, D.; Verstraeten, M.; Doshi, P.; am Ende, M. T.; Turnbull, N.; Lee, K.; De Beer, T.; Nopens, I., On the modelling of granule size distributions in twin-screw wet granulation: calibration of a novel compartmental population balance model, Powder Technol., 341, 116-125 (2019) · doi:10.1016/j.powtec.2018.05.025
[156] Vanni, M., Approximate population balance equations for aggregation-breakage processes, J. Colloid Interface Sci., 221, 143-160 (2000) · doi:10.1006/jcis.1999.6571
[157] Wynn, E. J W., Improved accuracy and convergence of discretized population balance of lister et al, AIChE J., 42, 2084-2086 (1996) · doi:10.1002/aic.690420729
[158] Xie, L.; Luo, Z-H, Multiscale computational fluid dynamics-population balance model coupled system of atom transfer radical suspension polymerization in stirred tank reactors, Ind. Eng. Chem. Res., 56, 4690-4702 (2017) · doi:10.1021/acs.iecr.7b00147
[159] Xiong, Y.; Pratsinis, S. E., Formation of agglomerate particles by coagulation and sintering: I. A two-dimensional solution of the population balance equation, J. Aerosol Sci., 24, 283-300 (1993) · doi:10.1016/0021-8502(93)90003-r
[160] Yuan, C.; Laurent, F.; Fox, R. O., An extended quadrature method of moments for population balance equations, J. Aerosol Sci., 51, 1-23 (2012) · doi:10.1016/j.jaerosci.2012.04.003
[161] Zhalehrajabi, E.; Lau, K. K.; KuShaari, K.; Tay, W. H.; Hagemeier, T.; Idris, A., Modelling of urea aggregation efficiency via particle tracking velocimetry in fluidized bed granulation, Chem. Eng. Sci., 223 (2020) · doi:10.1016/j.ces.2020.115737
[162] Zhao, H.; Kruis, F. E.; Zheng, C., A differentially weighted Monte Carlo method for two-component coagulation, J. Comput. Phys., 229, 6931-6945 (2010) · Zbl 1208.82055 · doi:10.1016/j.jcp.2010.05.031
[163] Zhao, H.; Maisels, A.; Matsoukas, T.; Zheng, C., Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems, Powder Technol., 173, 38-50 (2007) · doi:10.1016/j.powtec.2006.12.010
[164] Zhao, H.; Xu, Z.; Zhao, H., Population balance Monte Carlo simulation of self-assembly of core (micro-Al_2O_3)-shell (nano-TiO_2) structure in aqueous suspensions, Chem. Eng. Sci., 199, 100-112 (2019) · doi:10.1016/j.ces.2018.12.059
[165] Zhao, H.; Zheng, C., A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems, Comput. Fluids, 71, 196-207 (2013) · Zbl 1365.76270 · doi:10.1016/j.compfluid.2012.09.025
[166] Zhao, J.; Li, W.; Qu, H.; Tian, G.; Wei, Y., Application of definitive screening design to quantify the effects of process parameters on key granule characteristics and optimize operating parameters in pulsed-spray fluid-bed granulation, Particuology, 43, 56-65 (2019) · doi:10.1016/j.partic.2018.03.007
[167] Ziff, R. M., New solutions to the fragmentation equation, J. Phys. A: Math. Gen., 24, 2821 (1991) · doi:10.1088/0305-4470/24/12/020
[168] Ziff, R. M., An explicit solution to a discrete fragmentation model, J. Phys. A: Math. Gen., 25, 2569 (1992) · doi:10.1088/0305-4470/25/9/027
[169] Ziff, R. M.; McGrady, E. D., The kinetics of cluster fragmentation and depolymerisation, J. Phys. A: Math. Gen., 18, 3027 (1985) · doi:10.1088/0305-4470/18/15/026
[170] Ziff, R. M.; McGrady, E. D., Kinetics of polymer degradation, Macromolecules, 19, 2513-2519 (1986) · doi:10.1021/ma00164a010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.