×

Exact power spectrum in a minimal hybrid model of stochastic gene expression oscillations. (English) Zbl 07864252

Summary: Stochastic oscillations in individual cells are usually characterized by a nonmonotonic power spectrum with an oscillatory autocorrelation function. Here we develop an analytical approach to stochastic oscillations in a minimal hybrid model of stochastic gene expression including promoter state switching, protein synthesis and degradation, as well as a genetic feedback loop. The oscillations observed in our model are noise-induced since the deterministic theory predicts stable fixed points. The autocorrelated function, power spectrum, and steady-state distribution of protein concentration fluctuations are computed in closed form. Using the exactly solvable model, we illustrate sustained oscillations as a circular motion along a stochastic hysteresis loop induced by gene state switching. A triphasic stochastic bifurcation upon the increasing strength of negative feedback is observed, which reveals how stochastic bursts evolve into stochastic oscillations. In our model, oscillations tend to occur when the protein is relatively stable and when gene switching is relatively slow. Translational bursting is found to enhance the robustness and broaden the region of stochastic oscillations. These results provide deeper insights into R. Thomas’s [in: Numerical methods in the study of critical phenomena, Proc. Colloq., Carry-le-Rouet/Fr. 1980, Springer Ser. Synerg. 9, 180–193 (1981; Zbl 0489.92025)] two conjectures for single-cell gene expression kinetics.

MSC:

92C40 Biochemistry, molecular biology
34A38 Hybrid systems of ordinary differential equations
37H20 Bifurcation theory for random and stochastic dynamical systems
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

Citations:

Zbl 0489.92025

References:

[1] Murray, J. D., Mathematical Biology: I. An Introduction, 3rd ed., Springer, New York, 2007.
[2] Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman and Hall, New York, 2006. · Zbl 1141.92002
[3] Qian, H., Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses, Annu. Rev. Biophys., 41 (2012), pp. 179-204.
[4] Thomas, R., On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations, in Numerical Methods in the Study of Critical Phenomena, Springer, 1981, pp. 180-193. · Zbl 0489.92025
[5] Plahte, E., Mestl, T., and Omholt, S. W., Feedback loops, stability and multistationarity in dynamical systems, J. Biol. Syst., 3 (1995), pp. 409-413.
[6] Gouzé, J.-L., Positive and negative circuits in dynamical systems, J. Biol. Syst., 6 (1998), pp. 11-15. · Zbl 1058.37537
[7] Snoussi, E. H., Necessary conditions for multistationarity and stable periodicity, J. Biol. Syst., 6 (1998), pp. 3-9. · Zbl 0982.92001
[8] Cinquin, O. and Demongeot, J., Positive and negative feedback: Striking a balance between necessary antagonists, J. Theor. Biol., 216 (2002), pp. 229-242.
[9] Soulé, C., Graphic requirements for multistationarity, ComPlexUs, 1 (2003), pp. 123-133.
[10] Richard, A. and Comet, J.-P., Stable periodicity and negative circuits in differential systems, J. Math. Biol., 63 (2011), pp. 593-600. · Zbl 1311.34096
[11] Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S., Stochastic gene expression in a single cell, Science, 297 (2002), pp. 1183-1186.
[12] Golding, I., Paulsson, J., Zawilski, S. M., and Cox, E. C., Real-time kinetics of gene activity in individual bacteria, Cell, 123 (2005), pp. 1025-1036.
[13] Cai, L., Friedman, N., and Xie, X. S., Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), pp. 358-362.
[14] Raj, A. and van Oudenaarden, A., Nature, nurture, or chance: Stochastic gene expression and its consequences, Cell, 135 (2008), pp. 216-226.
[15] Taniguchi, Y., et al., Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells, Science, 329 (2010), pp. 533-538.
[16] Paulsson, J., Models of stochastic gene expression, Phys. Life Rev., 2 (2005), pp. 157-175.
[17] Schnoerr, D., Sanguinetti, G., and Grima, R., Approximation and inference methods for stochastic biochemical kinetics—a tutorial review, J. Phys. A, 50 (2017), 093001. · Zbl 1360.92051
[18] Shahrezaei, V. and Swain, P. S., Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 17256-17261.
[19] Friedman, N., Cai, L., and Xie, X. S., Linking stochastic dynamics to population distribution: An analytical framework of gene expression, Phys. Rev. Lett., 97 (2006), 168302.
[20] Mackey, M. C., Tyran-Kamińska, M., and Yvinec, R., Dynamic behavior of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math., 73 (2013), pp. 1830-1852, doi:10.1137/12090229X. · Zbl 1279.92029
[21] Bokes, P. and Singh, A., Protein copy number distributions for a self-regulating gene in the presence of decoy binding sites, PloS one, 10 (2015), e0120555.
[22] Jedrak, J. and Ochab-Marcinek, A., Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process, Phys. Rev. E, 94 (2016), 032401.
[23] Chen, X. and Jia, C., Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks, J. Math. Biol., 80 (2020), pp. 959-994. · Zbl 1431.60083
[24] Karmakar, R. and Bose, I., Graded and binary responses in stochastic gene expression, Phys. Biol., 1 (2004), 197.
[25] Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S., Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309.
[26] Dattani, J. and Barahona, M., Stochastic models of gene transcription with upstream drives: Exact solution and sample path characterization, J. Roy. Soc. Interface, 14 (2017), 20160833.
[27] Bressloff, P. C., Stochastic switching in biology: From genotype to phenotype, J. Phys. A, 50 (2017), 133001. · Zbl 1360.92042
[28] Lin, Y. T. and Buchler, N. E., Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes, J. Roy. Soc. Interface, 15 (2018), 20170804.
[29] Jia, C., Yin, G. G., Zhang, M. Q., et al., Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback, Phys. Rev. E, 100 (2019), 052406.
[30] Jia, C., Zhang, M. Q., and Qian, H., Emergent Levy behavior in single-cell stochastic gene expression, Phys. Rev. E, 96 (2017), 040402(R).
[31] Wang, X., Li, Y., and Jia, C., Poisson representation: A bridge between discrete and continuous models of stochastic gene regulatory networks, J. Roy. Soc. Interface, 20 (2023), 20230467.
[32] Novák, B. and Tyson, J. J., Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9 (2008), pp. 981-991.
[33] Tsai, T. Y.-C., et al., Robust, tunable biological oscillations from interlinked positive and negative feedback loops, Science, 321 (2008), pp. 126-129.
[34] Li, Z., Liu, S., and Yang, Q., Incoherent inputs enhance the robustness of biological oscillators, Cell Syst., 5 (2017), pp. 72-81.
[35] Lev Bar-Or, R., et al., Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 11250-11255.
[36] Lahav, G., et al., Dynamics of the p53-Mdm2 feedback loop in individual cells, Nat. Genet., 36 (2004), 147.
[37] Geva-Zatorsky, N., et al., Oscillations and variability in the p53 system, Mol. Syst. Biol., 2 (2006), 2006.0033.
[38] Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D., The \(I \kappa B\)-NF-\( \kappa B\) signaling module: Temporal control and selective gene activation, Science, 298 (2002), pp. 1241-1245.
[39] Nelson, D., et al., Oscillations in NF-\( \kappa B\) signaling control the dynamics of gene expression, Science, 306 (2004), pp. 704-708.
[40] Tay, S., et al., Single-cell NF-\( \kappa B\) dynamics reveal digital activation and analogue information processing, Nature, 466 (2010), pp. 267-271.
[41] Li, F., Long, T., Lu, Y., Ouyang, Q., and Tang, C., The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 4781-4786.
[42] Ferrell, J. E., Tsai, T. Y.-C., and Yang, Q., Modeling the cell cycle: Why do certain circuits oscillate?, Cell, 144 (2011), pp. 874-885.
[43] Lee, K., Loros, J. J., and Dunlap, J. C., Interconnected feedback loops in the Neurospora circadian system, Science, 289 (2000), pp. 107-110.
[44] Gallego, M. and Virshup, D. M., Post-translational modifications regulate the ticking of the circadian clock, Nat. Rev. Mol. Cell Biol., 8 (2007), pp. 139-148.
[45] Meyer, T. and Stryer, L., Molecular model for receptor-stimulated calcium spiking, Proc. Natl. Acad. Sci. USA, 85 (1988), pp. 5051-5055.
[46] Qi, H., Li, X., Jin, Z., Simmen, T., and Shuai, J., The oscillation amplitude, not the frequency of cytosolic calcium, regulates apoptosis induction, Iscience, 23 (2020), 101671.
[47] Elowitz, M. B. and Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335.
[48] Stricker, J., et al., A fast, robust and tunable synthetic gene oscillator, Nature, 456 (2008), pp. 516-519.
[49] Barnes, C. P., Silk, D., and Stumpf, M. P., Bayesian design strategies for synthetic biology, Interface Focus, 1 (2011), pp. 895-908.
[50] Vellela, M. and Qian, H., On the Poincaré-Hill cycle map of rotational random walk: Locating the stochastic limit cycle in a reversible Schnakenberg model, Proc. Roy. Soc. A, , 466 (2010), pp. 771-788. · Zbl 1195.82049
[51] Qian, H. and Qian, M., Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance, Phys. Rev. Lett., 84 (2000), 2271.
[52] Bratsun, D., Volfson, D., Tsimring, L. S., and Hasty, J., Delay-induced stochastic oscillations in gene regulation, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 14593-14598.
[53] McKane, A. J., Nagy, J. D., Newman, T. J., and Stefanini, M. O., Amplified biochemical oscillations in cellular systems, J. Stat. Phys., 128 (2007), pp. 165-191. · Zbl 1158.92309
[54] Dauxois, T., Di Patti, F., Fanelli, D., and McKane, A. J., Enhanced stochastic oscillations in autocatalytic reactions, Phys. Rev. E, 79 (2009), 036112.
[55] Realpe-Gomez, J., Galla, T., and McKane, A. J., Demographic noise and piecewise deterministic Markov processes, Phys. Rev. E, 86 (2012), 011137.
[56] Thomas, P., Straube, A. V., and Grima, R., The slow-scale linear noise approximation: An accurate, reduced stochastic description of biochemical networks under timescale separation conditions, BMC Syst. Biol., 6 (2012), pp. 1-23.
[57] Toner, D. and Grima, R., Effects of bursty protein production on the noisy oscillatory properties of downstream pathways, Sci. Rep., 3 (2013), 2438.
[58] Thomas, P., Straube, A. V., Timmer, J., Fleck, C., and Grima, R., Signatures of nonlinearity in single cell noise-induced oscillations, J. Theoret. Biol., 335 (2013), pp. 222-234. · Zbl 1397.92176
[59] Thomas, P., Popović, N., and Grima, R., Phenotypic switching in gene regulatory networks, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 6994-6999.
[60] Jia, C. and Grima, R., Frequency domain analysis of fluctuations of mRNA and protein copy numbers within a cell lineage: Theory and experimental validation, Phys. Rev. X, 11 (2021), 021032.
[61] Jia, C., Singh, A., and Grima, R., Concentration fluctuations in growing and dividing cells: Insights into the emergence of concentration homeostasis, PLoS Comput. Biol., 18 (2022), e1010574.
[62] Gupta, A. and Khammash, M., Frequency spectra and the color of cellular noise, Nat. Commun., 13 (2022), 4305.
[63] Lestas, I., Vinnicombe, G., and Paulsson, J., Fundamental limits on the suppression of molecular fluctuations, Nature, 467 (2010), pp. 174-178.
[64] Ashall, L., et al., Pulsatile stimulation determines timing and specificity of NF-\( \kappa B\)-dependent transcription, Science, 324 (2009), pp. 242-246.
[65] Hornos, J., et al., Self-regulating gene: An exact solution, Phys. Rev. E, 72 (2005), 051907.
[66] Grima, R., Schmidt, D., and Newman, T., Steady-state fluctuations of a genetic feedback loop: An exact solution, J. Chem. Phys., 137 (2012), 035104.
[67] Kumar, N., Platini, T., and Kulkarni, R. V., Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113 (2014), 268105.
[68] Jia, C. and Grima, R., Small protein number effects in stochastic models of autoregulated bursty gene expression, J. Chem. Phys., 152 (2020), 084115.
[69] Wu, B., Holehouse, J., Grima, R., and Jia, C., Solving the time-dependent protein distributions for autoregulated bursty gene expression using spectral decomposition, J. Chem. Phys., 160 (2024), 074105.
[70] Jiao, F., Sun, Q., Tang, M., Yu, J., and Zheng, B., Distribution modes and their corresponding parameter regions in stochastic gene transcription, SIAM J. Appl. Math., 75 (2015), pp. 2396-2420, doi:10.1137/151005567. · Zbl 1368.92054
[71] Cai, L., Dalal, C. K., and Elowitz, M. B., Frequency-modulated nuclear localization bursts coordinate gene regulation, Nature, 455 (2008), 485.
[72] Qian, M., Qian, M.-P., and Zhang, X.-J., Fundamental facts concerning reversible master equations, Phys. Lett. A, 309 (2003), pp. 371-376. · Zbl 1011.82002
[73] Suter, D. M., et al., Mammalian genes are transcribed with widely different bursting kinetics, Science, 332 (2011), pp. 472-474.
[74] Ginoux, J.-M. and Letellier, C., Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept, Chaos, 22 (2012), 023120. · Zbl 1331.34003
[75] Zenklusen, D., Larson, D. R., and Singer, R. H., Single-RNA counting reveals alternative modes of gene expression in yeast, Nat. Struct. Mol. Biol., 15 (2008), 1263.
[76] Jiao, F. and Zhu, C., Regulation of gene activation by competitive cross talking pathways, Biophys. J., 119 (2020), pp. 1204-1214.
[77] Jia, C. and Li, Y., Analytical time-dependent distributions for gene expression models with complex promoter switching mechanisms, SIAM J. Appl. Math., 83 (2023), pp. 1572-1602, doi:10.1137/22M147219X. · Zbl 1520.92029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.