×

A nonlocal rate-type viscoplastic approach to patterning of deformation. (English) Zbl 0908.73026

The authors propose a nonlocal rate-type constitutive equation including the Maxwell’s terms as well as higher order strain gradients in the additional relaxation function. The corresponding model should account for micro-structural and non-equilibrium effects in phase transition. The model can be deduced from the thermodynamics of non-simple bodies with internal variables. The authors analyse the compatibility with the second law of thermodynamics in order to establish explicit sufficient conditions for the compatibility with the Clausius-Duhem inequality and with the balance equations. Additionally, it is shown that the model is a nonlocal Sokolovskii-Malvern type one. In the one-dimensional case, the authors obtain energy estimates, a free energy function, and a controlled strain-rate with non-rapidly varying strain. Further they study the influence of rate-dependent effects on the local behaviour of solutions for a second-order gradient viscoplastic model. The diagrams show the boundaries of equilibrium domains in the stress-strain and stress-second order gradient spaces, which allows to determine the critical wave lengths in instability and pattern formation ranges. The variation of wave numbers versus a modulus-dependent term and the admissible domains for real roots are shown in diagrams in the dynamic case.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74C99 Plastic materials, materials of stress-rate and internal-variable type
74A15 Thermodynamics in solid mechanics
74A30 Nonsimple materials
Full Text: DOI

References:

[1] Suliciu, I.: On the description of the dynamics of phase transitions by means of rate-type constitutive equations. A model problem. In: Proceedings of Plasticity ’89 (Khan, A. S., Tokuda, M., eds.), pp. 417–420. New York: Pergamon Press 1989.
[2] Fâciu, C.: Numerical aspects in modelling phase transitions by rate-type constitutive equations. Int. J. Eng. Sci.29, 1103–1119 (1991). · Zbl 0825.73203 · doi:10.1016/0020-7225(91)90115-J
[3] Fâciu, C.: Stress-induced phase transformations in rate-type viscoelasticity. J. Phys. IV1, C101-C106 (1991).
[4] Suliciu, I.: Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Int. J. Eng. Sci.30, 483–494 (1992). · Zbl 0752.73009 · doi:10.1016/0020-7225(92)90039-J
[5] Mihâilescu-Suliciu, M., Suliciu, I.: Stable numerical solutions to a dynamic problem for a softening material. Mech. Res. Comm.20, 475–480 (1993). · Zbl 0800.73103 · doi:10.1016/0093-6413(93)90006-A
[6] Fâciu, C., Suliciu, I.: A Maxwellian model for pseudoelastic materials. Scripta Metall.31, 1399–1404 (1994). · doi:10.1016/0956-716X(94)90125-2
[7] Suliciu, I.: Some numerical results for viscoplastic softening problem. Arch. Mech.47, 391–403 (1995). · Zbl 0834.73020
[8] Fâciu, C.: Initiation and growth of strain bands in rate-type viscoelastic materials. Part I: Discontinuous strain solutions, Eur. J. Mech. A/Solids15, 969–988 (1996). · Zbl 0883.73030
[9] Fâciu, C.: Initiation and growth of strain bands in rate-type viscoelastic materials. Part II: The energetics of the banding mechanism. Eur. J. Mech. A/Solids15, 989–1011 (1996). · Zbl 0883.73030
[10] Aifantis, E. C., Serrin, J. B.: The mechanical theory of fluid interfaces and Maxwell’s rule. J. Colloid. Interface Sci.96, 517–529 (1983). · doi:10.1016/0021-9797(83)90053-X
[11] Aifantis, E. C., Serrin, J. B.: Equilibrium solutions in the mechanical theory of fluid microstructures. J. Colloid. Interface Sci.96, 530–547 (1983). · doi:10.1016/0021-9797(83)90054-1
[12] Falk, F.: Ginzburg-Landau theory of static domain walls in shape memory-alloys. Z. Phys. B – Condensed Matter51, 177–185 (1983). · doi:10.1007/BF01308772
[13] Triantafyllidis, N., Aifantis, E. C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity16, 225–237 (1986). · Zbl 0594.73044 · doi:10.1007/BF00040814
[14] Leroy, Y. M., Molinari, A.: Spatial patterns and size effects in shear zones: a hyperelastic model with higher-order gradients. J. Mech. Phys. Solids41, 631–663 (1993). · Zbl 0783.73017 · doi:10.1016/0022-5096(93)90021-7
[15] Zbib, H. M., Aifantis, E. C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mech.92, 209–225 (1992). · Zbl 0751.73022 · doi:10.1007/BF01174177
[16] Coleman, B. D., Newman, D. C.: On adiabatic shear bands in rigid-plastic materials. Acta Mech.78, 263–279 (1989). · Zbl 0687.73052 · doi:10.1007/BF01179222
[17] Aifantis, E. C.: Spatio-temporal instabilities in deformation and fracture. In: Computational material modeling, AD-Vol. 42/PVP-Vol. 294, ASME (Noor, A. K., Needleman, A., eds.), pp. 199–221 (1994).
[18] Coleman, B. D., Noll, W.: The thermodynamics of elastic materials with heat condution and viscosity. Arch. Rat. Mech. Anal.13, 167–178 (1963). · Zbl 0113.17802 · doi:10.1007/BF01262690
[19] Müller, I.: On the entropy inequality. Arch. Rat. Mech. Anal.26, 118–141 (1967). · Zbl 0163.46701 · doi:10.1007/BF00285677
[20] Aifantis, E. C.: A proposal for continuum with microstructure. Mech. Res. Comm.5, 139–145 (1978). · doi:10.1016/0093-6413(78)90047-2
[21] Dunn, J. E., Serrin, J. B.: On the thermomechanics of interstitial working. Arch. Rat. Mech. Anal.88, 95–133 (1985). · Zbl 0582.73004 · doi:10.1007/BF00250907
[22] Šilhavý, M.: Thermostatics of non-simple materials. Czech. J. Phys. B34, 601–621 (1984). · doi:10.1007/BF01589858
[23] Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Rat. Mech. Anal.88, 135–161 (1985). · Zbl 0624.73007 · doi:10.1007/BF00250908
[24] Sokolovskii, V. V.: The propagation of elastic-viscoplastic waves in bars. Dokl. Akad. Nauka SSSR60, 775–778 (1948) (in Russian).
[25] Malvern, L. E.: The propagation of longitudinal waves of plastic deformation in a bar of materials exhibiting a strain rate effect. J. Appl. Mech.18, 203–208 (1951). · Zbl 0044.40001
[26] Cristescu, N., Suliciu, I.: Viscoplasticity. The Hague: Nijhoff 1982.
[27] Suliciu, I., Şabac, M.: Energy estimates in one-dimensional rate-type viscoplasticity. J. Math. Anal. Appl.131, 354–372 (1988). · Zbl 0637.73039 · doi:10.1016/0022-247X(88)90211-9
[28] Fâciu, C., Mihâilescu-Suliciu, M.: The energy in one-dimensional rate-type semilinear viscoelasticity. Int. J. Solids Struct.23, 1505–1520 (1987). · Zbl 0653.73018 · doi:10.1016/0020-7683(87)90066-7
[29] Fâciu, C., Molinari, A.: Evolution of layered structures in a gradient-dependent viscoplastic material. J. Phys. IV6, 45–54 (1996).
[30] Coleman, B. D., Owen, D. R.: On thermodynamics and intrinsically equilibrated materials. Annali Mat. Pura Appl. (IV)108, 189–199 (1976). · Zbl 0351.73006 · doi:10.1007/BF02413953
[31] Mihâilescu-Suliciu, M., Suliciu, I.: Energy for hypoelastic constitutive equations. Arch. Rat. Mech. Anal.70, 168–179 (1979). · Zbl 0418.73006
[32] Gurtin, M. E., Williams, W. O., Suliciu, I.: On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials. Int. J. Solids Struct.16, 607–617 (1980). · Zbl 0433.73004 · doi:10.1016/0020-7683(80)90020-7
[33] Kratochvil, J., Dillon, O. W.: Thermodynamics of crystalline elastic-plastic materials as a theory with internal state variables. J. Appl. Phys.40, 3207–3217 (1969). · doi:10.1063/1.1658167
[34] Kratochvil, J., Dillon, O. W.: Thermodynamics of crystalline elastic-viscoplastic materials. J. Appl. Phys.41, 1470–1479 (1970). · doi:10.1063/1.1659058
[35] Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys.47, 597–613 (1967). · doi:10.1063/1.1711937
[36] John, F.: Partial differential equations. Berlin Heidelberg New York: Springer 1982. · Zbl 0472.35001
[37] Molinari, I.: Instabilité thermoviscoplastique en cisaillement simple. J. Mech. Th. Appl.4, 659–684 (1985). · Zbl 0578.73119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.