×

Dispersion relation for hadronic light-by-light scattering: theoretical foundations. (English) Zbl 1388.81508

Summary: In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to (\(g-2)_{\mu}\). We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to \((g-2)_{\mu}\) in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. The pion loop, dispersively defined as pion-box topology, is proven to coincide exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Software:

FeynCalc

References:

[1] Muon g-2 collaboration, J. Grange et al., Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
[2] J-PARC g-2/EDM collaboration, N. Saito, A novel precision measurement of muon g − 2 and EDM at J-PARC, AIP Conf. Proc.1467 (2012) 45.
[3] F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept.477 (2009) 1 [arXiv:0902.3360] [INSPIRE]. · doi:10.1016/j.physrep.2009.04.003
[4] J. Prades, E. de Rafael and A. Vainshtein, The Hadronic Light-by-Light Scattering Contribution to the Muon and Electron Anomalous Magnetic Moments, Adv. Ser. Direct. High Energy Phys.20 (2009) 303 [arXiv:0901.0306] [INSPIRE]. · doi:10.1142/9789814271844_0009
[5] M. Benayoun et al., Hadronic contributions to the muon anomalous magnetic moment Workshop. (g − 2)μ: Quo vadis? Workshop. Mini proceedings, arXiv:1407.4021 [INSPIRE].
[6] T. Blum et al., The Muon (g-2) Theory Value: Present and Future, arXiv:1311.2198 [INSPIRE].
[7] C.M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g − 2, Phys. Lett.B 746 (2015) 325 [arXiv:1504.02228] [INSPIRE]. · doi:10.1016/j.physletb.2015.05.020
[8] J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Higher Order Hadronic Corrections to the Anomalous Magnetic Moment of the Muon, Phys. Lett.B 61 (1976) 283 [INSPIRE]. · doi:10.1016/0370-2693(76)90150-7
[9] A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett.B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE]. · doi:10.1016/j.physletb.2014.05.043
[10] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett.B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE]. · doi:10.1016/j.physletb.2014.06.012
[11] E. de Rafael, Hadronic contributions to the muon g − 2 and low-energy QCD, Phys. Lett.B 322 (1994) 239 [hep-ph/9311316] [INSPIRE].
[12] J. Bijnens, E. Pallante and J. Prades, Hadronic light by light contributions to the muon g − 2 in the large-Nclimit, Phys. Rev. Lett.75 (1995) 1447 [Erratum ibid.75 (1995) 3781] [hep-ph/9505251] [INSPIRE].
[13] J. Bijnens, E. Pallante and J. Prades, Analysis of the hadronic light by light contributions to the muon g − 2, Nucl. Phys.B 474 (1996) 379 [hep-ph/9511388] [INSPIRE].
[14] J. Bijnens, E. Pallante and J. Prades, Comment on the pion pole part of the light by light contribution to the muon g − 2, Nucl. Phys.B 626 (2002) 410 [hep-ph/0112255] [INSPIRE].
[15] M. Hayakawa, T. Kinoshita and A.I. Sanda, Hadronic light by light scattering effect on muon g−2, Phys. Rev. Lett.75 (1995) 790 [hep-ph/9503463] [INSPIRE]. · doi:10.1103/PhysRevLett.75.790
[16] M. Hayakawa, T. Kinoshita and A.I. Sanda, Hadronic light by light scattering contribution to muon g − 2, Phys. Rev.D 54 (1996) 3137 [hep-ph/9601310] [INSPIRE].
[17] M. Hayakawa and T. Kinoshita, Pseudoscalar pole terms in the hadronic light by light scattering contribution to muon g − 2, Phys. Rev.D 57 (1998) 465 [Erratum ibid.D 66 (2002) 019902] [hep-ph/9708227] [INSPIRE].
[18] M. Knecht, A. Nyffeler, M. Perrottet and E. de Rafael, Hadronic light by light scattering contribution to the muon g − 2: An Effective field theory approach, Phys. Rev. Lett.88 (2002) 071802 [hep-ph/0111059] [INSPIRE]. · doi:10.1103/PhysRevLett.88.071802
[19] M. Knecht and A. Nyffeler, Hadronic light by light corrections to the muon g − 2: The Pion pole contribution, Phys. Rev.D 65 (2002) 073034 [hep-ph/0111058] [INSPIRE].
[20] M.J. Ramsey-Musolf and M.B. Wise, Hadronic light by light contribution to muon g − 2 in chiral perturbation theory, Phys. Rev. Lett.89 (2002) 041601 [hep-ph/0201297] [INSPIRE]. · doi:10.1103/PhysRevLett.89.041601
[21] K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev.D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
[22] T. Goecke, C.S. Fischer and R. Williams, Hadronic light-by-light scattering in the muon g-2: a Dyson-Schwinger equation approach, Phys. Rev.D 83 (2011) 094006 [Erratum ibid.D 86 (2012) 099901] [arXiv:1012.3886] [INSPIRE].
[23] M. Hayakawa, T. Blum, T. Izubuchi and N. Yamada, Hadronic light-by-light scattering contribution to the muon g-2 from lattice QCD: Methodology, PoS(LAT2005)353 [hep-lat/0509016] [INSPIRE].
[24] T. Blum, M. Hayakawa and T. Izubuchi, Hadronic corrections to the muon anomalous magnetic moment from lattice QCD, PoS(LATTICE 2012)022 [arXiv:1301.2607] [INSPIRE].
[25] T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.114 (2015) 012001 [arXiv:1407.2923] [INSPIRE]. · doi:10.1103/PhysRevLett.114.012001
[26] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP09 (2014) 091 [arXiv:1402.7081] [INSPIRE]. · doi:10.1007/JHEP09(2014)091
[27] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett.B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE]. · doi:10.1016/j.physletb.2014.09.021
[28] T. Kinoshita, B. Nizic and Y. Okamoto, Hadronic Contributions to the Anomalous Magnetic Moment of the Muon, Phys. Rev.D 31 (1985) 2108 [INSPIRE].
[29] E. de Rafael, Update of the Electron and Muon g-Factors, Nucl. Phys. Proc. Suppl.234 (2013) 193 [arXiv:1210.4705] [INSPIRE]. · doi:10.1016/j.nuclphysbps.2012.12.012
[30] V. Pauk and M. Vanderhaeghen, Anomalous magnetic moment of the muon in a dispersive approach, Phys. Rev.D 90 (2014) 113012 [arXiv:1409.0819] [INSPIRE].
[31] W.A. Bardeen and W.K. Tung, Invariant amplitudes for photon processes, Phys. Rev.173 (1968) 1423 [Erratum ibid.D 4 (1971) 3229] [INSPIRE].
[32] R. Tarrach, Invariant Amplitudes for Virtual Compton Scattering Off Polarized Nucleons Free from Kinematical Singularities, Zeros and Constraints, Nuovo Cim.A 28 (1975) 409 [INSPIRE]. · doi:10.1007/BF02894857
[33] P. Stoffer, Dispersive Treatments of Kℓ4Decays and Hadronic Light-by-Light Scattering, Ph.D. Thesis, University of Bern, Bern Switzerland (2014), [arXiv:1412.5171].
[34] G.E. Hite and F. Steiner, New dispersion relations and their application to partial-wave amplitudes, Nuovo Cim.A 18 (1973) 237 [INSPIRE]. · doi:10.1007/BF02722827
[35] P. Büettiker, S. Descotes-Genon and B. Moussallam, A new analysis of pi K scattering from Roy and Steiner type equations, Eur. Phys. J.C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].
[36] M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγ → ππ, Eur. Phys. J.C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE]. · doi:10.1140/epjc/s10052-011-1743-x
[37] C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, Roy-Steiner equations for pion-nucleon scattering, JHEP06 (2012) 043 [arXiv:1203.4758] [INSPIRE]. · doi:10.1007/JHEP06(2012)043
[38] D. Drechsel, G. Knochlein, A. Yu. Korchin, A. Metz and S. Scherer, Structure analysis of the virtual Compton scattering amplitude at low-energies, Phys. Rev.C 57 (1998) 941 [nucl-th/9704064] [INSPIRE].
[39] F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev.110 (1958) 974 [INSPIRE]. · Zbl 0082.42802 · doi:10.1103/PhysRev.110.974
[40] B. Moussallam, Unified dispersive approach to real and virtual photon-photon scattering at low energy, Eur. Phys. J.C 73 (2013) 2539 [arXiv:1305.3143] [INSPIRE]. · doi:10.1140/epjc/s10052-013-2539-y
[41] M. Jacob and G.C. Wick, On the general theory of collisions for particles with spin, Annals Phys.7 (1959) 404 [INSPIRE]. · Zbl 0178.28304 · doi:10.1016/0003-4916(59)90051-X
[42] K.M. Watson, Some general relations between the photoproduction and scattering of pi mesons, Phys. Rev.95 (1954) 228 [INSPIRE]. · Zbl 0057.21902 · doi:10.1103/PhysRev.95.228
[43] H.W. Fearing and S. Scherer, Virtual Compton scattering off spin zero particles at low-energies, Few Body Syst.23 (1998) 111 [nucl-th/9607056] [INSPIRE]. · doi:10.1007/s006010050067
[44] R. Karplus and M. Neuman, Non-Linear Interactions between Electromagnetic Fields, Phys. Rev.80 (1950) 380 [INSPIRE]. · Zbl 0041.33121 · doi:10.1103/PhysRev.80.380
[45] R.A. Leo, A. Minguzzi and G. Soliani, Tensor Amplitudes for Elastic Photon-Photon Scattering, Nuovo Cim.A 30 (1975) 270 [INSPIRE]. · doi:10.1007/BF02730173
[46] G. Eichmann, C. S. Fischer, W. Heupel and R. Williams, The muon g-2: Dyson-Schwinger status on hadronic light-by-light scattering, arXiv:1411.7876.
[47] G. Eichmann, C.S. Fischer and W. Heupel, Four-point functions and the permutation group S4, arXiv:1505.06336 [INSPIRE].
[48] F. Jegerlehner, The anomalous magnetic moment of the muon, Springer Tracts Mod. Phys.226 (2008) 1.
[49] J. Aldins, T. Kinoshita, S.J. Brodsky and A.J. Dufner, Photon-photon scattering contribution to the sixth order magnetic moments of the muon and electron, Phys. Rev.D 1 (1970) 2378 [INSPIRE].
[50] J.L. Rosner, Higher-order contributions to the divergent part of Z(3) in a model quan tum electrodynamics, Annals Phys.44 (1967) 11 [INSPIRE]. · doi:10.1016/0003-4916(67)90262-X
[51] J. Bijnens and M.Z. Abyaneh, The hadronic light-by-light contribution to the muon anomalous magnetic moment and renormalization group for EFT, EPJ Web Conf.37 (2012) 01007 [arXiv:1208.3548] [INSPIRE]. · doi:10.1051/epjconf/20123701007
[52] M.Z. Abyaneh, The Anatomy of the Pion Loop Hadronic Light by Light Scattering Contribution to the Muon Magnetic Anomaly, MSc Thesis, Lund University, Lund Sweden (2012) [arXiv:1208.2554].
[53] V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous magnetic moment, Eur. Phys. J.C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE]. · doi:10.1140/epjc/s10052-014-3008-y
[54] S. Mandelstam, Unitarity Condition Below Physical Thresholds in the Normal and Anomalous Cases, Phys. Rev. Lett.4 (1960) 84 [INSPIRE]. · Zbl 0089.21603 · doi:10.1103/PhysRevLett.4.84
[55] W. Lucha, D. Melikhov and S. Simula, Dispersion representations and anomalous singularities of the triangle diagram, Phys. Rev.D 75 (2007) 016001 [hep-ph/0610330] [INSPIRE].
[56] M. Hoferichter, G. Colangelo, M. Procura and P. Stoffer, Virtual photon-photon scattering, Int. J. Mod. Phys. Conf. Ser.35 (2014) 1460400 [arXiv:1309.6877] [INSPIRE]. · doi:10.1142/S2010194514604001
[57] J.S. Frederiksen and W.S. Woolcock, The analytic properties of the scalar vertex function, Nucl. Phys.B 28 (1971) 605 [INSPIRE]. · doi:10.1016/0550-3213(71)90020-4
[58] J.S. Frederiksen and W.S. Woolcock, Singularities of the triangle diagram vertex function, Austral. J. Phys.26 (1973) 691. · doi:10.1071/PH730691
[59] J.S. Frederiksen and W.S. Woolcock, The analytic properties of the box diagram amplitude. 1., Annals Phys.75 (1973) 503 [INSPIRE]. · doi:10.1016/0003-4916(73)90079-1
[60] J.S. Frederiksen and W.S. Woolcock, The analytic properties of the box diagram amplitude. 2., Annals Phys.80 (1973) 86 [INSPIRE]. · doi:10.1016/0003-4916(73)90320-5
[61] S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev.112 (1958) 1344 [INSPIRE]. · doi:10.1103/PhysRev.112.1344
[62] A.D. Martin and T.D. Spearman, Elementary Particle Theory, North-Holland Publishing Company, Amsterdam The Netherlands (1970).
[63] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE]. · Zbl 0122.22605 · doi:10.1063/1.1703676
[64] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE].
[65] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun.64 (1991) 345 [INSPIRE]. · doi:10.1016/0010-4655(91)90130-D
[66] G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys.B 153 (1979) 365 [INSPIRE].
[67] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e−Annihilation Into μ+μ−in the Weinberg Model, Nucl. Phys.B 160 (1979) 151 [INSPIRE]. · doi:10.1016/0550-3213(79)90234-7
[68] F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J.C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE]. · doi:10.1140/epjc/s10052-012-2014-1
[69] S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗and ϕ → π0γ∗transition form factors in dispersion theory, Phys. Rev.D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].
[70] M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ, Phys. Rev.D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].
[71] M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig and S.P. Schneider, Dispersive analysis of the pion transition form factor, Eur. Phys. J.C 74 (2014) 3180 [arXiv:1410.4691] [INSPIRE]. · doi:10.1140/epjc/s10052-014-3180-0
[72] R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π+π−, π0π0with chiral constraints, Eur. Phys. J.C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE]. · doi:10.1140/epjc/s10052-010-1471-7
[73] F. Stollenwerk et al., Model-independent approach to η → π+π−γ and η′ → π+π−γ, Phys. Lett.B 707 (2012) 184 [arXiv:1108.2419] [INSPIRE]. · doi:10.1016/j.physletb.2011.12.008
[74] C. Hanhart et al., Dispersive analysis for η → γγ∗, Eur. Phys. J.C 73 (2013) 2668 [arXiv:1307.5654] [INSPIRE]. · doi:10.1140/epjc/s10052-013-2668-3
[75] B. Kubis and J. Plenter, Anomalous decay and scattering processes of the η meson, Eur. Phys. J.C 75 (2015) 283 [arXiv:1504.02588] [INSPIRE]. · doi:10.1140/epjc/s10052-015-3495-5
[76] A.O. Barut, The Theory of the Scattering Matrix, Macmillan, New York U.S.A. (1967). · Zbl 0159.60303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.