×

Modeling and stability analysis of HIV-1 as a time delay fuzzy T-S system via LMIs. (English) Zbl 1443.92006

Summary: This paper proposes a time delay fuzzy Takagi-Sugeno (T-S) representation of a nonlinear dynamic model of HIV-1 as well as stability analysis of the model. Asymptotic stability of the resulting T-S fuzzy system with state-delay is investigated and partially established. The focus is mainly on the delay-dependent stability analysis based on the fuzzy weighting-dependent Lyapunov function method.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
92C50 Medical applications (general)
34K20 Stability theory of functional-differential equations
Full Text: DOI

References:

[1] Joly, M.; Odloak, D., Rescue therapy planning based on HIV genotyping testing, Chem. Eng. Sci., 93, 445-466, (2013)
[2] Hadjiandreou, M. M.; Conejeros, R.; Wilson, D. I., Planning of patient-specific drug-specific optimal HIV treatment strategies, Chem. Eng. Sci., 64, 4024-4039, (2009)
[3] Joly, M.; Pinto, J. M., General framework for multi-compartmental analysis of drug chemotherapy dynamics in human immunodeficiency virus type-1 infected individuals, Appl. Math. Model., 36, 12, 5830-5843, (2012) · Zbl 1349.92097
[4] Hu, S.; Zhang, Y.; Du, Z., Robust H_∞ control for T-S fuzzy systems with probabilistic interval time varying delay, Nonlinear Anal.: Hybrid Syst., 6, 3, 871-884, (2012) · Zbl 1244.93044
[5] Defang, L.; Bochu, W., A novel time delayed HIV/AIDS model with vaccination & antiretroviral therapy and its stability analysis, Appl. Math. Modell., 37, 7, 4608-4625, (April 1, 2013) · Zbl 1426.92079
[6] Yang, F.; Zhang, H.; Hui, G.; Wang, S., Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays, Fuzzy Sets Syst., 207, 16, 45-63, (November 2012) · Zbl 1252.93064
[7] M.A.L. Caetano, J.A.M. Felippe de Souza, T. Yoneyama, Optimal medication in HIV seropositive patient treatment using fuzzy cost function, 2008 American Control Conference, Seattle, Washington, USA, June 11-13, 2008.
[8] Brandt, M. E.; Chen, G., Feedback control of a biodynamical model of HIV-1, IEEE Trans. Biomed. Eng., 48, 7, (July 2001)
[9] I. Craig, X. Xia, Can HIV/AIDS be controlled? Applying control engineering concepts outside traditional fields, IEEE Control Systems Magazine, February 2005.
[10] Costanza, V.; Rivadeneira, P. S.; Biafore, F. L.; D’Attellis, C. E., A closed-loop approach to antiretroviral therapies for HIV infection, Biomed. Signal Process. Control, 4, 139-148, (2009)
[11] Mhawej, M. J.; Brunet-Francois, C.; Fonteneau, R.; Ernst, D.; Ferre, V.; Stan, G. B.; Raffi, F.; Moog, C. H., Apoptosis characterizes immunological failure of HIV infected patients, Control Eng. Practice, 17, 798-804, (2009)
[12] Xia, X., Estimation of HIV/AIDS parameters, Automatica, 39, 1983-1988, (2003) · Zbl 1046.93013
[13] Xia, X., Modeling of HIV infection: vaccine readiness, drug effectiveness and therapeutical failures, J. Process Control, 17, 253-260, (2007)
[14] F.L. Biafore, C.E. D’Attellis, Exact linearisation and control of a HIV-1 predator-prey model, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
[15] Ge, S. S.; Tian, Z.; Lee, T. H., Nonlinear control of a dynamic model of HIV-1, IEEE Trans. Biomed. Eng., 52, 3, (March 2005)
[16] Jeffrey, A. M.; Xia, X., When to initiate HIV therapy: a control theoretic approach, IEEE Trans. Biomed. Eng., 50, 11, (November 2003)
[17] Elaiw, A. M., Global properties of a class of HIV models, Nonlinear Anal.: Real World Appl., 11, 22532263, (2010) · Zbl 1197.34073
[18] R. Zurakowski, M.J. Messina, S.E. Tuna, A.R. Tee1, HIV treatment scheduling via robust nonlinear model predictive control, IEEE 2004 5th Asian Control Conference, 2004.
[19] H. Chang, A. Astolfi, Control of the HIV Infection dynamics with a reduced second order model, Proceedings of the 2007 American Control Conference, New York City, USA, July 11-13, 2007.
[20] Chang, H.; Astolfi, A., Enhancement of the immune system in HIV dynamics by output feedback, Automatica, 45, 17651770, (2009) · Zbl 1184.93059
[21] H.J. Chang, H. Shim, J.H. Seo, Control of immune response of HIV infection model by gradual reduction of drug dose, 43rd IEEE Conference on Decision and Control, December 14-17, 2004.
[22] L. Yongqi, S. Zhendong, Backward bifurcation in an HIV model with two target cells, Proceedings of the 29th Chinese Control Conference July 29-31, Beijing, China, 2010.
[23] B.S. Chen, C.F. Wu, B.K. Lee, The applications of stochastic regulation \(H_\infty\) control to HIV therapy, Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July, 2010.
[24] Ledzewicz, U.; Schattler, H., On optimal controls for a general mathematical model for chemotherapy of HIV, (2002), IEEE · Zbl 1035.49020
[25] Ko, J. H.; Kim, W. H.; Chung, C. C., Optimized structured treatment interruption for HIV therapy and its performance analysis on controllability, IEEE Trans. Biomed. Eng., 53, 3, (March 2006)
[26] H. Chang, A. Astolfi, “Control of HIV infection dynamics,” IEEE control systems magazine, April 2008. · Zbl 1395.93413
[27] Pannocchia, G.; Laurino, M.; Landi, A., A model predictive control strategy toward optimal structured treatment interruptions in anti-HIV therapy, IEEE Trans. Biomed. Eng., 57, 5, (May 2010)
[28] Mhawej, M. J.; Moog, C. H.; Biafore, F.; Brunet-Francois, C., Control of the HIV infection and drug dosage, Biomed. Signal Process. Control, 5, 45-52, (2010)
[29] Barao, M.; Lemos, J. M., Nonlinear control of HIV-1 infection with a singular perturbation model, Biomed. Signal Process. Control, 2, 248-257, (2007)
[30] Gumel, A. B.; Moghadas, S. M., HIV control in vivo: dynamical analysis, Commun. Nonlinear Sci. Numer. Simul., 9, 561-568, (2004) · Zbl 1121.92300
[31] J.M. Orellana, Optimal drug scheduling for HIV therapy efficiency improvement, Biomedical Signal Processing and Control xxx, 2010.
[32] Wu, J.; Zhang, M., A game theoretical approach to optimal control of dual drug delivery for HIV infection treatment, IEEE Trans. Syst. Man Cybern.—Part B Cybern., 40, 3, (June 2010)
[33] Velichenko, V. V.; Pritykin, D. A., Numerical methods of optimal control of the HIV-infection dynamics, J. Comput. Syst. Sci. Int., 45, 6, 894-905, (2006) · Zbl 1263.49032
[34] R. Luo, M.J. Piovoso, R. Zurakowski, A generalized multi-strain model of HIV evolution with implications for drug-resistance management, 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009.
[35] Rong, L.; Gilchrist, M. A.; Feng, Zh.; Perelson, A. S., Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility, J. Theor. Biol., 247, 804-818, (2007) · Zbl 1455.92087
[36] H.T. Banks, H.D. Kwon, J.A. Toivanen, H.T. Tran, An SDRE Based Estimator Approach for HIV Feedback Control, 2005.
[37] B.M. Adams, H.T. Banks, M. Davidian, “Model Fitting and Prediction with HIV Treatment Interruption Data,” 2005.
[38] G.-B. Stan, F. Belmudes, R. Fonteneau, F. Zeggwagh, M.A. Lefebvre, C. Michelet, D. Ernst, Modelling the influence of activation-induced apoptosis of CD41 and CD81 T cells on the immune system response of a HIV-infected patient, IET Systems Biology, 2007.
[39] G.B. Singh, Computational Modeling and Prediction of the Human Immunodeficiency Virus (HIV) Strains, IEEE.
[40] S.M. Shechter, A.J. Schaefer, R.S. Braithwaite, M.S. Roberts, Modeling the progression and treatment of HIV, Proceedings of the IEEE 2004 Winter Simulation Conference, 2004.
[41] A.M. Spagnuolo, D.M. Hanna, W. Lindsey, G.A. Stryker, Modeling HIV-1 dynamics and the effects of decreasing activated infected T-cell count by filtration, Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004.
[42] T. Marwala, B. Crossingham, Neuro-rough models for modelling HIV, 2008 IEEE International Conference on Systems, Man and Cybernetics (SMC 2008). · Zbl 1170.68593
[43] Ding, Y.; Ye, H., A fractional-order differential equation model of HIV infection of CD4C T-cells, Math. Comput. Model., 50, 386392, (2009) · Zbl 1185.34005
[44] P.K. Roy, N. Bairagi, J. Chattopadhyay, B. Chattopadhyay, HIV model with intracellular delay -a mathematical study, 5th Annual IEEE Conference on Automation Science and Engineering Bangalore, India, August 22-25, 2009.
[45] Banks, H. T.; Dediu, S.; Nguyen, H. K., Time delay systems with distribution dependent dynamics, Annu. Rev. Control, 31, 17-26, (2007)
[46] Banks, H. T.; Bortz, D. M.; Holte, S. E., Incorporation of variability into the modeling of viral delays in HIV infection dynamics, Math. Biosci., 183, 63-91, (2003) · Zbl 1011.92037
[47] Lv, C.; Yuan, Z., Stability analysis of delay differential equation models of HIV-1 therapy for fighting a virus with another virus, J. Math. Anal. Appl., 352, 672-683, (2009) · Zbl 1160.37437
[48] Xu, R., Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl., 61, 2799-2805, (2011) · Zbl 1221.37204
[49] Jiang, X.; Zhou, X.; Shi, X.; Song, X., Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells, Chaos Solitons Fractals, 38, 447-460, (2008) · Zbl 1146.34313
[50] Zhou, X.; Song, X.; Shi, X., Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math. Comput., 199, 23-38, (2008) · Zbl 1136.92027
[51] Srivastava, P. Kr.; Chandra, P., Modeling the dynamics of HIV and CD4+T cells during primary infection, Nonlinear Anal.: Real World Appl., 11, 612-618, (2010) · Zbl 1181.37122
[52] Nelson, P. W.; Murray, J. D.; Perelson, A. S., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163, 201-215, (2000) · Zbl 0942.92017
[53] Wang, Y.; Zhou, Y.; Wu, J.; Heffernan, J., Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219, 104-112, (2009) · Zbl 1168.92031
[54] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94, (2002) · Zbl 0992.92035
[55] Ouifki, R.; Witten, G., Stability analysis of a model for HIV infection with RTI and three intracellular delays, BioSystems, 95, 1-6, (2009)
[56] Li, D.; Ma, W., Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl., 335, 683-691, (2007) · Zbl 1130.34052
[57] Xu, R., Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375, 75-81, (2011) · Zbl 1222.34101
[58] Culshaw, R. V.; Ruan, S., A delay-differential equation model of HIV infection of CD4+T-cells, Math. Biosci., 165, 27-39, (2000) · Zbl 0981.92009
[59] Guardiola, J.; Izzo, G.; Vecchio, A., Simulating the effect of vaccine-induced immune responses on HIV infection, Hum. Immunol., 64, 840-851, (2003)
[60] Hu, Z.; Liu, X.; Wang, H.; Ma, W., Analysis of the dynamics of a delayed HIV pathogenesis model, J. Comput. Appl. Math., 234, 461476, (2010) · Zbl 1185.92062
[61] Betechuoh, B. L.; Marwala, T.; Manana, J. V., Computational intelligence for HIV modelling, (2008), IEEE
[62] F. Lin, H. Ying, X. Luan, R.D. MacArthur, J.A. Cohn, D. Barth-Jones, L.R. Crane, Theory for a control architecture of fuzzy discrete event systems for decision making, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, December 12-15, 2005.
[63] M.A. Melgarejo, C.A. Peña-Reyes, E. Sanchez, A genetic-fuzzy system approach to control a model of the HIV infection dynamics, 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, July 16-21, 2006.
[64] Lin, C.; Wang, Q. G.; Lee, T. H.; He, Y., LMI approach to analysis and control of Takagi-sugeno fuzzy systems with time delay, (2007), Springer · Zbl 1119.93002
[65] M. Nentwig, P. Mercorelli, A matlab/simulink toolbox for inversion of local linear model trees, IAENG Int. J. Comput. Sci. 37:1, IJCS37103. · Zbl 1261.92001
[66] Peng, C.; Fei, M. R., An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay, Fuzzy Sets Syst., 212, 97-109, (2013) · Zbl 1285.93054
[67] Wodarz, D., Killer cell dynamics: mathematical and computational approaches to immunology, (2007), Springer · Zbl 1125.92032
[68] Joly, M.; Pinto, J. M., CXCR4 and CCR5 regulation and expression patterns on T- and monocyte-macrophage cell lineages: implications for susceptibility to infection by HIV-1, Math. Biosci., 195, 92-126, (2005) · Zbl 1065.92027
[69] Joly, M.; Pinto, J. M., An in-depth analysis of the HIV-1/AIDS dynamics by comprehensive mathematical modeling, Math. Comput. Modell., 55, 342-366, (2012) · Zbl 1255.92015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.