×

Energy simulation and variable analysis of refining process in thermo-mechanical pulp mill using machine learning approach. (English) Zbl 1485.93420

Summary: Data from two thermo-mechanical pulp mills are collected to simulate the refining process using deep learning. A multilayer perceptron neural network is utilized for pattern recognition of the refining variables. Results show the impressive capability of artificial intelligence methods in refining energy simulation so that the correlation coefficient of 98% is accessible. A comprehensive parametric study has been made to investigate the effect of refining disturbance variables, plate gap and dilution water on refining energy simulation. The generated model reveals the non-linear hidden pattern between refining variables, which can be used for optimal refining control strategy. Considering the disturbance variables’ effect in refining energy simulation, model accuracy could increase by 15%. Removing the plate gape from predictive variables reduces the simulation determination coefficient by up to 25% in both mills, while the mentioned value for removing dilution water is 9–17% in mill 1 and about 35% in mill 2.

MSC:

93C95 Application models in control theory
68T07 Artificial neural networks and deep learning

Software:

PRMLT

References:

[1] Talebjedi, B.; Behbahaninia, A., Availability analysis of an Energy Hub with CCHP system for economical design in terms of Energy Hub operator, J. Build. Eng., 33, 101564 (2021) · doi:10.1016/j.jobe.2020.101564
[2] Tanaka, K., Review of policies and measures for energy efficiency in industry sector, Energy Policy, 39, 10, 6532-6550 (2011) · doi:10.1016/j.enpol.2011.07.058
[3] Holmberg, J. M.; Gustavsson, L., Biomass use in chemical and mechanical pulping with biomass-based energy supply, Resour. Conserv. Recycl., 52, 331-350 (2007) · doi:10.1016/j.resconrec.2007.05.002
[4] Akhtar, M.; Scott, G. M.; Swaney, R. E.; Shipley, D. F., Biomechanical pulping : A mill-scale evaluation, Resour. Conserv. Recycl., 28, 241-252 (2000) · doi:10.1016/S0921-3449(99)00048-8
[5] Bajpai, P., Pulp and Paper Industry : Energy Conservation (2016), Elsevier
[6] Corcelli, F.; Ripa, M.; Ulgiati, S., Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study, Resour. Conserv. Recycl., 131, 313-328 (2018) · doi:10.1016/j.resconrec.2017.11.028
[7] Muenster, M.; Ferritsius, O.; Lecourt, M.; Petit-Conil, M., High temperature LC/MC refining offers TMP energy advantages, Pulp Pap., 79, 4449 (2006)
[8] Three steps to improved TMP operating efficiency, 356-369 (2007)
[9] Strand, G. F.B. C., Economic benefits from advanced quality control of TMP mills, 11-15 (2000)
[10] Rudie, A.; Sabourin, M., Wood influence on thermomechanical pulp quality: Fibre separation and fibre breakage, pp 359-363 (2002), Montréal: Pulp and Paper Technical Association of Canada, Montréal
[11] Talebjedi, B.; Laukkanen, T.; Holmberg, H.; Vakkilainen, E.; Syri, S., Energy Efficiency Analysis of the Refining Unit in Thermo-Mechanical Pulp Mill, Energies, 14, 6, 1664 (2021) · doi:10.3390/en14061664
[12] Tian, H.; Lu, Q.; Gopaluni, R. B.; Zavala, V. M.; Olson, J. A., Control Engineering Practice An economic model predictive control framework for mechanical pulping processes, Control Eng. Pract., 85, 100-109 (2019) · doi:10.1016/j.conengprac.2019.01.008
[13] Blanco, A., Use of modelling and simulation in the pulp and paper industry, Math. Comput. Model. Dyn. Syst., 15, 5, 409-423 (2009) · Zbl 1186.93010 · doi:10.1080/13873950903375387
[14] Bagheri, A.; Esfandiari, N.; Honarvar, B.; Azdarpour, A., First principles versus artificial neural network modelling of a solar desalination system with experimental validation, Math. Comput. Model. Dyn. Syst., 26, 5, 453-480 (2020) · Zbl 1487.80001 · doi:10.1080/13873954.2020.1788609
[15] Taheri, S.; Razban, A., Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation, Build. Environ., 205, 108164 (2021) · doi:10.1016/j.buildenv.2021.108164
[16] Talebjedi, B.; Ghazi, M.; Tasnim, N.; Janfaza, S.; Hoorfar, M., Performance optimization of a novel passive T-shaped micromixer with deformable baffles, Chem. Eng. Process. - Process Intensif, 163, 108369 pp. (2021) · doi:10.1016/j.cep.2021.108369
[17] Harinath, E.; Biegler, L.; Dumont, G., Predictive optimal control for thermo-mechanical pulping processes with multi-stage low consistency refining, J. Process Control, 23, 7, 1001-1011 (2013) · doi:10.1016/j.jprocont.2013.05.005
[18] Alonso, A.; Negro, C.; Blanco, A.; Pío, I. S., Application of advanced data treatment to predict paper properties, Math. Comput. Model. Dyn. Syst., 15, 5, 453-462 (2009) · Zbl 1186.93007 · doi:10.1080/13873950903375445
[19] Taheri, S.; Jooshaki, M.; Moeini-aghtaie, M., Long-term planning of integrated local energy systems using deep learning algorithms, Int. J. Electr. Power Energy Syst., 129, 106855 (2021) · doi:10.1016/j.ijepes.2021.106855
[20] Bishop, C., Pattern Recognition and Machine Learning (2006), Springer · Zbl 1107.68072
[21] Taheri, S.; Ahmadi, A.; Mohammadi-ivatloo, B.; Asadi, S., Fault detection diagnostic for HVAC systems via deep learning algorithms, Energy Build., 250, 111275 (2021) · doi:10.1016/j.enbuild.2021.111275
[22] Wang, Y.; Elhag, T., A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks, Expert Syst. Appl., 32, 2, 336-348 (2007) · doi:10.1016/j.eswa.2005.11.029
[23] Kumar, A.; Rao, V. R.; Soni, H.; Letters, S. M.; Oct, N., An Empirical Comparison of Neural Network and Logistic Regression Models, Mark. Lett., 6, 4, 251-263 (1995) · doi:10.1007/BF00996189
[24] Jang, H.; Topal, E., Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network, Tunn. Undergr. Sp. Technol., 38, 161-169 (2013) · doi:10.1016/j.tust.2013.06.003
[25] Talebjedi, B.; Khosravi, A.; Laukkanen, T.; Holmberg, H.; Vakkilainen, E.; Syri, S., Energy Modeling of a Refiner in Thermo-Mechanical Pulping Process Using ANFIS Method, Energies, 13, 19, 5113 pp. (2020) · doi:10.3390/en13195113
[26] Simula, O.; Alhoniemi, E., SOM based analysis of pulping process data, 567-577 (2006)
[27] Ciesielski, K.; Olejnik, K., Application of Neural Networks for Estimation of Paper Properties Based on Refined Pulp Properties, FIBRES Text. East. Eur., 5, 126-132 (2014)
[28] Musavi, M. T.; Coughlin, D. R.; Qiao, M., “Prediction of wood pulp K with radial basis function neural network,” in, 1716-1719 (1995)
[29] Molga, E.; Cherban, R., Hybrid first-principle-neural-network approach to modelling of the liquid-liquid reacting system, Chem. Eng. Sci., 54, 13-14, 2467-2473 (1999) · doi:10.1016/S0009-2509(98)00506-5
[30] Dufour, P.; Bhartiya, S.; Dhurjati, P. S.; Iii, F. J.D., Neural network-based software sensor : Training set design and application to a continuous pulp digester, Control Eng. Pract., 13, 2, 135-143 (2005) · doi:10.1016/j.conengprac.2004.02.013
[31] Bajpai, P., Biermann’s Handbook of Pulp and Paper: Raw Material and Pulp Making (2018), Elsevier: Elsevier, kanpur,india
[32] Huhtanen, J. P., Numerical study on refiner flows: Determination of refining efficiency and pulp quality by mixing analogy (2007), Tippa. (Tippa Press
[33] Smook, G., Handbook for Pulp and Paper Technologists (1992), Joint Textbook Committee of the Paper Industry: Joint Textbook Committee of the Paper Industry, Vancouver, BC, Canada
[34] Stationwala, M. T.; Atack, D.; Wood, J. R.; Wild, D. J.; Karnis, A., The effect of control variables on refining zone conditions and pulp properties, 93-109 (1979)
[35] Schwartz, H.; Chang, G.; Liu, Y.; Phung, T., A method of modeling, predicting and controlling TMP pulp properties, 846-851 (1996)
[36] Gouda, M. M.; Danaher, S.; Underwood, C. P., Application of an Artificial Neural Network for Modelling the Thermal Dynamics of a Building’s Space and its Heating System, Math. Comput. Model. Dyn. Syst., 8, 3, 333-344 (2010) · Zbl 1043.93506 · doi:10.1076/mcmd.8.3.333.14097
[37] Bergstra, J. and Bengio, Y.. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13 (2012), 281-305. http://dl.acm.org/citation.cfm?id=2188395 · Zbl 1283.68282
[38] Kooi, S., Adaptive inferential control of wood chip refiner, 445-450 (1993)
[39] Dumont, G. A., Self-tuning control of a chip refiner motor load, Automatica, 18, 3, 307-314 (1982) · Zbl 0478.93034 · doi:10.1016/0005-1098(82)90090-5
[40] Fournier, M.; Ma, H.; Shallhorn, P.; Roche, A., Control of Chip Refiner Operation, J. Pulp Pap. Sci., 18, J182-J187 (1992)
[41] Li, B.; Li, H.; Zha, Q.; Bandekar, R.; Alsaggaf, A.; Ni, Y., Review: Effects of wood quality and refining process on tmp pulp and paper quality, BioResources, 6, 3, 3569-3584 (2011) · doi:10.15376/biores.6.3.Li
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.