×

Wave resonances in the presence of current and the frequency and time-domain interconnection. (English) Zbl 1524.76089

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] Phillips, O. M., On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions, J. Fluid Mech., 9, 2, 193-217 (1960) · Zbl 0094.41101
[2] Hammack, J. L.; Henderson, D. M., Resonant interactions among surface water waves, Annu. Rev. Fluid Mech., 25, 1, 55-97 (1993)
[3] Liao, S. J., On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1274-1303 (2011) · Zbl 1221.76046
[4] McIver, P., Complex resonances in the water-wave problem for a floating structure, J. Fluid Mech., 536, 423-443 (2005) · Zbl 1073.76007
[5] Hedges, T. S., Combinations of waves and currents: an introduction, Proc. Inst. Civ. Eng., 82, 567-585 (1987)
[6] Taylor, G. I., The action of a surface current used as a breakwater, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 231, 466-478 (1955)
[7] Peregrine, D. H., Interaction of water waves and currents, Adv. Appl. Mech., 16, 97-117 (1976) · Zbl 0471.76018
[8] Jonsson, I. G.; Wang, J. D., Current-depth refraction of water waves, Ocean Eng., 7, 153-171 (1980)
[9] Squire, V. A., Synergies between VLFS hydroelasticity and sea ice research, Int. J. Offshore Polar Eng., 18, 4, 241-253 (2008)
[10] Watanabe, E.; Utsunomiya, T.; Wang, C. M., Hydroelastic analysis of pontoon-type VLFS: a literature survey, Eng. Struct., 26, 2, 245-256 (2004)
[11] Hermans, A. J., A boundary element method for the interaction of free-surface waves with a very large floating flexible platform, J. Fluilds Struct., 14, 7, 943-956 (2000)
[12] Sahoo, T.; Yip, T. L.; Chwang, A. T., Scattering of surface waves by a semi-infinite floating elastic plate, Phys. Fluids, 13, 3215-3222 (2001) · Zbl 1184.76470
[13] Bhattacharjee, J.; Sahoo, T., Interaction of current and flexural gravity waves, Ocean Eng., 34, 11, 1505-1515 (2007)
[14] Schulkes, R.; Sneyd, A., Time-dependent response of floating ice to a steadily moving load, J. Fluid Mech., 186, 25-46 (1988) · Zbl 0646.76028
[15] Das, S.; Sahoo, T.; Meylan, M. H., Dynamics of flexural gravity waves: from sea ice to hawking radiation and analogue gravity, Proc. R. Soc. A. Math. Phys. Eng. Sci., 474, 2209, Article 20170223 pp. (2018) · Zbl 1402.76024
[16] Saha, S.; Mohanty, S. K.; Bora, S. N., Flexural gravity wave resonance in the presence of current, J. Waterw. Port Coast. Ocean Eng., 148, 3, Article 04022003 pp. (2022)
[17] Behera, H.; Ng, Chiu-On; Sahoo, T., Oblique wave scattering by a floating elastic plate over a porous bed in single and two-layer fluid systems, Ocean Eng., 159, 280-294 (2018)
[18] Hassan, M.; Meylan, M. H.; Peter, M. A., Water-wave scattering by submerged elastic plates, Q. J. Mech. Appl. Math., 62, 3, 321-344 (2009) · Zbl 1170.76010
[19] Kirby, J., A general wave equation for waves over rippled beds, J. Fluid Mech., 162, 171-186 (1986) · Zbl 0596.76017
[20] Martha, S. C.; Bora, S. N.; Chakrabarti, A., Oblique water-wave scattering by small undulation on a porous sea-bed, Appl. Ocean Res., 29, 86-90 (2007)
[21] Wang, C. M.; Meylan, M. H., The linear wave response of a floating thin plate on water of variable depth, Appl. Ocean Res., 24, 3, 163-174 (2002)
[22] Kar, P.; Sahoo, T.; Meylan, M. H., Bragg scattering of long waves by an array of floating flexible plates in the presence of multiple submerged trenches, Phys. Fluids, 32, 9, Article 096603 pp. (2020)
[23] Debnath, L., On transient development of surface waves due to two dimensional sources, Acta Mech., 11, 185-202 (1971) · Zbl 0229.76009
[24] Lu, D. Q.; Dai, S. Q., Flexural- and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth, Internat. J. Engrg. Sci., 46, 1183-1193 (2008) · Zbl 1213.76069
[25] Meylan, M. H., Spectral solution of time-dependent shallow water hydroelasticity, J. Fluid Mech., 454, 387-402 (2002) · Zbl 1044.74012
[26] Mohanty, S. K.; Mondal, R.; Sahoo, T., Time dependent flexural gravity waves in the presence of current, J. Fluilds Struct., 45, 28-49 (2014)
[27] Stepanyants, Y. A.; Sturova, I. V., Waves on a compressed floating ice plate caused by motion of a dipole in water, J. Fluid Mech., 907, A7, 1-29 (2021) · Zbl 1492.76027
[28] Mohanty, S. K.; Sidharth, M., Time dependent wave motion in a permeable bed, Meccanica, 55, 1481-1497 (2020) · Zbl 1537.76020
[29] Das, S.; Kar, P.; Sahoo, T.; Meylan, M. H., Flexural-gravity wave motion in the presence of shear current: Wave blocking and negative energy waves, Phys. Fluids, 30, 10, Article 106606 pp. (2018)
[30] Mohanty, S. K., Time-dependent wave motion with undulated bottom, Acta Mech., 232, 283-303 (2021) · Zbl 1458.76018
[31] Barman, S. C.; Boral, S.; Sahoo, T.; Meylan, M. H., Bragg scattering of long flexural gravity waves by an array of submerged trenches and the analysis of blocking dynamics, AIP Adv., 11, Article 115308 pp. (2021)
[32] Negi, P.; Boral, S.; Sahoo, T., Scattering of long flexural gravity wave due to structural heterogeneity in the framework of wave blocking, Wave Motion, 112, Article 102949 pp. (2022) · Zbl 1524.76090
[33] Das, S., Flexural-gravity wave dissipation under strong compression and ocean current near blocking point, Waves Random Complex Media, 1-25 (2022)
[34] Chung, H.; Fox, C., Calculation of wave-ice interaction using the Wiener-Hopf technique, New Zealand J. Math., 31, 1, 1-18 (2002) · Zbl 1043.35128
[35] Bardell, N. S., Visualising the roots of quadratic equations with complex coefficients, Aust. Senior Math. J., 28, 1, 7-28 (2014)
[36] Mohapatra, S., Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean with ice-cover, J. Mar. Sci. Appl., 13, 167-172 (2014)
[37] Davies, A. G.; Heathershaw, A. D., Surface-wave propagation over sinusoidally varying topography, J. Fluid Mech., 144, 419-443 (1984)
[38] Behera, H.; Sahoo, T., Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate, J. Fluilds Struct., 54, 643-660 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.