×

An entropy-stable p-adaptive nodal discontinuous Galerkin for the coupled Navier-Stokes/Cahn-Hilliard system. (English) Zbl 07527720

Summary: We develop a novel entropy-stable discontinuous Galerkin approximation of the incompressible Navier-Stokes/Cahn-Hilliard system for p-non-conforming elements. This work constitutes an evolution of the work presented by J. Manzanero et al. [J. Comput. Phys. 408, Article ID 109363, 38 p. (2020; Zbl 07505633)], as it extends the discrete analysis into supporting p-adaptation (p-refinement/coarsening). The scheme is based on the summation-by-parts simultaneous-approximation term property along with Gauss-Lobatto points and suitable numerical fluxes. The p-non-conforming elements are connected through the classic mortar method, the use of central fluxes for the inviscid terms, and the BR1 scheme with additional dissipation for the viscous fluxes. The scheme is proven to retain its properties of the original conforming scheme when transitioning to p-non-conforming elements and to mimic the continuous entropy analysis of the model. We focus on dynamic polynomial adaptation as the applications of interest are unsteady multiphase flows. In this work, we introduce a heuristic adaptation criterion that depends on the location of the interface between the different phases and utilises the convection velocity to predict the movement of the interface. The scheme is verified to be total phase conserving, entropy-stable and freestream preserving for curvilinear p-non-conforming meshes. We also present the results for a rising bubble simulation and we show that for the same accuracy we get a \(\times 2\) to \(\times 6\) reduction in the degrees of freedom and a 41% reduction in the computational time. We compare our results for the three-dimensional dam break test case against experimental and numerical data and we show that a \(\times 4.3\) to \(\times 9.5\) reduction of the degrees of freedom and a 51% reduction in the computational time can be achieved compared to the p-uniform solution.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Txx Multiphase and multicomponent flows

Citations:

Zbl 07505633

Software:

SISPH; HOPR

References:

[1] Mirjalili, S.; Jain, S.; Dodd, M., Interface-Capturing Methods for Two-Phase Flows: An Overview and Recent Developments, Center for Turbulence Research - Annual Research Brief, vol. 12, 117-135 (2017)
[2] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 2, 258-267 (1958) · Zbl 1431.35066
[3] Caginalp, G.; Chen, X., Convergence of the phase field model to its sharp interface limits, Eur. J. Appl. Math., 9, 4, 417-445 (1998) · Zbl 0930.35024
[4] Yue, P.; Zhou, C.; Feng, J. J., Sharp-interface limit of the Cahn-Hilliard model for moving contact lines, J. Fluid Mech., 645, 279 (2010) · Zbl 1189.76074
[5] Kim, J.; Lee, S.; Choi, Y.; Lee, S. M.; Jeong, D., Basic principles and practical applications of the Cahn-Hilliard equation, Math. Probl. Eng., 2016 (2016) · Zbl 1400.35157
[6] Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 3, 1159-1179 (2010) · Zbl 1410.76464
[7] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation, J. Comput. Phys., 403, Article 109072 pp. (2020) · Zbl 1453.65338
[8] Ntoukas, G.; Manzanero, J.; Rubio, G.; Valero, E.; Ferrer, E., A free-energy stable p-adaptive nodal discontinuous Galerkin for the Cahn-Hilliard equation, J. Comput. Phys., Article 110409 pp. (2021) · Zbl 07513792
[9] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J. Comput. Phys., 408, Article 109241 pp. (2020) · Zbl 07505602
[10] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system, J. Comput. Phys., 408, Article 109363 pp. (2020) · Zbl 07505633
[11] Ferrer, E.; Willden, R., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 1, 224-230 (2011) · Zbl 1431.76011
[12] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[13] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[14] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[15] Chen, T.; Shu, C. W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[16] Winters, A. R.; Moura, R. C.; Mengaldo, G.; Gassner, G. J.; Walch, S.; Peiro, J., A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, J. Comput. Phys., 372, 1-21 (2018) · Zbl 1415.76461
[17] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[18] Biswas, B.; Kumar, H.; Yadav, A., Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations, J. Comput. Phys., 431, Article 110148 pp. (2021) · Zbl 07511459
[19] Chen, T.; Shu, C. W., Review of Entropy Stable Discontinuous Galerkin Methods for Systems of Conservation Laws on Unstructured Simplex Meshes (2020)
[20] Tadmor, E., Entropy Stable Schemes, Handbook of Numerical Analysis., vol. 17, 467-493 (2016), Elsevier
[21] Kou, J.; Sun, S., Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state, Comput. Methods Appl. Mech. Eng., 341, 221-248 (2018) · Zbl 1440.76096
[22] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 431, Article 110135 pp. (2021) · Zbl 07511452
[23] Mattsson, K.; Carpenter, M. H., Stable and accurate interpolation operators for high-order multiblock finite difference methods, SIAM J. Sci. Comput., 32, 4, 2298-2320 (2010) · Zbl 1216.65107
[24] Kozdon, J. E.; Wilcox, L. C., Stable coupling of nonconforming, high-order finite difference methods, SIAM J. Sci. Comput., 38, 2, A923-A952 (2016) · Zbl 1380.65160
[25] Nissen, A.; Kormann, K.; Grandin, M.; Virta, K., Stable difference methods for block-oriented adaptive grids, J. Sci. Comput., 65, 2, 486-511 (2015) · Zbl 1408.65054
[26] Almquist, M.; Wang, S.; Werpers, J., Order-preserving interpolation for summation-by-parts operators at nonconforming grid interfaces, SIAM J. Sci. Comput., 41, 2, A1201-A1227 (2019) · Zbl 1415.65182
[27] Kozdon, J. E.; Wilcox, L. C., An energy stable approach for discretizing hyperbolic equations with nonconforming discontinuous Galerkin methods, J. Sci. Comput., 76, 3, 1742-1784 (2018) · Zbl 1401.65106
[28] Friedrich, L.; Winters, A. R.; Fernández, D. CD. R.; Gassner, G. J.; Parsani, M.; Carpenter, M. H., An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property, J. Sci. Comput., 77, 2, 689-725 (2018) · Zbl 1407.65185
[29] Parsani, M.; Carpenter, M. H.; Nielsen, E. J., Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations, J. Comput. Phys., 290, 1, 132-138 (2015) · Zbl 1349.76250
[30] Carpenter, M. H.; Parsani, M.; Nielsen, E. J.; Fisher, T. C., Towards an entropy stable spectral element framework for computational fluid dynamics, (54th AIAA Aerospace Sciences Meeting (2016)), 1058
[31] Shadpey, S.; Zingg, D. W., Entropy-stable multidimensional summation-by-parts discretizations on hp-adaptive curvilinear grids for hyperbolic conservation laws, J. Sci. Comput., 82, 3, 1-46 (2020) · Zbl 07197755
[32] Parsani, M.; Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J., Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations, SIAM J. Sci. Comput., 38, 5, A3129-A3162 (2016) · Zbl 1457.65149
[33] Fernández, D. C.D. R.; Carpenter, M. H.; Dalcin, L.; Zampini, S.; Parsani, M., Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier-Stokes equations, Partial Differ. Equ. Appl., 1, 2, 1-54 (2020) · Zbl 1454.65123
[34] Fernández, D. C.D. R.; Carpenter, M. H.; Dalcin, L.; Fredrich, L.; Winters, A. R.; Gassner, G. J., Entropy-stable p-nonconforming discretizations with the summation-by-parts property for the compressible Navier-Stokes equations, Comput. Fluids, Article 104631 pp. (2020) · Zbl 1521.76326
[35] Chan, J.; Bencomo, M.; Fernández, D. C., Mortar-based entropy-stable discontinuous Galerkin methods on non-conforming quadrilateral and hexahedral meshes (2020), arXiv preprint · Zbl 1502.65115
[36] Xie, Z.; Pavlidis, D.; Percival, J. R.; Gomes, J. L.; Pain, C. C.; Matar, O. K., Adaptive unstructured mesh modelling of multiphase flows, Int. J. Multiph. Flow, 67, 104-110 (2014)
[37] Fondelli, T.; Andreini, A.; Facchini, B., Numerical simulation of dam-break problem using an adaptive meshing approach, Energy Proc., 82, 309-315 (2015)
[38] Ngo, L. C.; Choi, H. G., A multi-level adaptive mesh refinement for an integrated finite element/level set formulation to simulate multiphase flows with surface tension, Comput. Math. Appl., 79, 4, 908-933 (2020) · Zbl 1443.65166
[39] Sussman, M., A parallelized, adaptive algorithm for multiphase flows in general geometries, Comput. Struct., 83, 6-7, 435-444 (2005)
[40] Nangia, N.; Griffith, B. E.; Patankar, N. A.; Bhalla, A. P.S., A robust incompressible Navier-Stokes solver for high density ratio multiphase flows, J. Comput. Phys., 390, 548-594 (2019) · Zbl 1452.76157
[41] Fuster, D.; Bagué, A.; Boeck, T.; Le Moyne, L.; Leboissetier, A.; Popinet, S., Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, Int. J. Multiph. Flow, 35, 6, 550-565 (2009)
[42] Yue, P.; Zhou, C.; Feng, J. J.; Ollivier-Gooch, C. F.; Hu, H. H., Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing, J. Comput. Phys., 219, 1, 47-67 (2006) · Zbl 1137.76318
[43] Ceniceros, H. D.; Roma, A. M., A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation, J. Comput. Phys., 225, 2, 1849-1862 (2007) · Zbl 1343.65109
[44] Wackers, J.; Deng, G.; Guilmineau, E.; Leroyer, A.; Queutey, P.; Visonneau, M., Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation, Comput. Fluids, 92, 209-222 (2014) · Zbl 1391.76117
[45] Ginzburg, I.; Wittum, G., Two-phase flows on interface refined grids modeled with VOF., staggered finite volumes, and spline interpolants, J. Comput. Phys., 166, 2, 302-335 (2001) · Zbl 1030.76035
[46] Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E.; Valero, E., An anisotropic p-adaptation multigrid scheme for discontinuous Galerkin methods, (Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 (2020), Springer: Springer Cham), 549-560 · Zbl 1484.65203
[47] Kompenhans, M.; Rubio, G.; Ferrer, E.; Valero, E., Comparisons of p-adaptation strategies based on truncation-and discretisation-errors for high order discontinuous Galerkin methods, Comput. Fluids, 139, 36-46 (2016) · Zbl 1390.76329
[48] Ekelschot, D.; Moxey, D.; Sherwin, S.; Peiró, J., A p-adaptation method for compressible flow problems using a goal-based error indicator, Comput. Struct., 181, 55-69 (2017)
[49] Chalmers, N.; Agbaglah, G.; Chrust, M.; Mavriplis, C., A parallel hp-adaptive high order discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. X, 2, Article 100023 pp. (2019) · Zbl 07785505
[50] Kopriva, D. A.; Woodruff, S. L.; Hussaini, M. Y., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int. J. Numer. Methods Eng., 53, 1, 105-122 (2002) · Zbl 0994.78020
[51] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31, 3, 688-699 (1959)
[52] Guermond, J. L.; Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 1, 167-188 (2000) · Zbl 0994.76051
[53] Shen, J.; Yang, X., Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin. Ann. Math., Ser. B, 31, 5, 743-758 (2010) · Zbl 1400.65049
[54] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 454, 1978, 2617-2654 (1998) · Zbl 0927.76007
[55] Shen, J., On a new pseudocompressibility method for the incompressible Navier-Stokes equations, Appl. Numer. Math., 21, 1, 71-90 (1996) · Zbl 0853.76052
[56] Feng, X.; Kou, J.; Sun, S., A novel energy stable numerical scheme for Navier-Stokes-Cahn-Hilliard two-phase flow model with variable densities and viscosities, (International Conference on Computational Science (2018), Springer), 113-128
[57] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media, 82, 3, 463-483 (2010)
[58] Gassner, G. J.; Winters Andrew, A.; Hindenlang, F.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, J. Sci. Comput., Article 04 pp. (2017)
[59] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[60] Dong, S., On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows, Comput. Methods Appl. Mech. Eng., 247, 179-200 (2012) · Zbl 1352.76119
[61] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[62] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301 (2006) · Zbl 1178.76269
[63] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[64] Kopriva, D. A.; Hindenlang, F. J.; Bolemann, T.; Gassner, G. J., Free-stream preservation for curved geometrically non-conforming discontinuous Galerkin spectral elements, J. Sci. Comput., 79, 3, 1389-1408 (2019) · Zbl 1448.76111
[65] Kopriva, D. A.; Hindenlang, F. J.; Bolemann, T.; Gassner, G. J., Free-stream preservation for curved geometrically non-conforming discontinuous Galerkin spectral elements, J. Sci. Comput., 79, 3, 1389-1408 (2019) · Zbl 1448.76111
[66] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301 (2006) · Zbl 1178.76269
[67] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., The stability of numerical boundary treatments for compact high-order finite-difference schemes, J. Comput. Phys., 108, 2, 272-295 (1993) · Zbl 0791.76052
[68] Kopriva, D. A., A polynomial spectral calculus for analysis of DG spectral element methods, (Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (2017), Springer), 21-40 · Zbl 1382.65345
[69] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: theory and numerical verification, J. Comput. Phys., 422, Article 108076 pp. (2020) · Zbl 07508372
[70] Bassi, F.; Massa, F.; Botti, L.; Colombo, A., Artificial compressibility Godunov fluxes for variable density incompressible flows, Comput. Fluids, 169, 186-200 (2018) · Zbl 1410.76155
[71] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[72] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer · Zbl 1227.76006
[73] Mavriplis, C., A posteriori error estimators for adaptive spectral element techniques, (Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics (1990), Springer), 333-342
[74] Manzanero, J.; Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E., The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss-Lobatto points, J. Comput. Phys., 363, 1-10 (2018) · Zbl 1398.65307
[75] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155, 1, 96-127 (1999) · Zbl 0966.76060
[76] Boyanova, P.; Neytcheva, M., Efficient numerical solution of discrete multi-component Cahn-Hilliard systems, Comput. Math. Appl., 67, 1, 106-121 (2014) · Zbl 1381.76155
[77] Yue, P.; Feng, J. J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293 (2004) · Zbl 1130.76437
[78] Teigen, K. E.; Song, P.; Lowengrub, J.; Voigt, A., A diffuse-interface method for two-phase flows with soluble surfactants, J. Comput. Phys., 230, 2, 375-393 (2011) · Zbl 1428.76210
[79] Barosan, I.; Anderson, P.; Meijer, H., Application of mortar elements to diffuse-interface methods, Comput. Fluids, 35, 10, 1384-1399 (2006) · Zbl 1177.76190
[80] Hintermüller, M.; Hinze, M.; Kahle, C., An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system, J. Comput. Phys., 235, 810-827 (2013) · Zbl 1291.65300
[81] Hysing, S. R.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) · Zbl 1273.76276
[82] Hosseini, B. S.; Turek, S.; Möller, M.; Palmes, C., Isogeometric analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows, J. Comput. Phys., 348, 171-194 (2017) · Zbl 1380.76039
[83] Martin, J. C.; Moyce, W. J.; Martin, J.; Moyce, W.; Penney, W. G.; Price, A., Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 244, 882, 312-324 (1952)
[84] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 3, 421-434 (1996), Available from:
[85] Ramaswamy, B.; Kawahara, M., Lagrangian finite element analysis applied to viscous free surface fluid flow, Int. J. Numer. Methods Fluids, 7, 9, 953-984 (1987) · Zbl 0622.76031
[86] Gu, Z.; Wen, H.; Yu, C. H.; Sheu, T. W., Interface-preserving level set method for simulating dam-break flows, J. Comput. Phys., 374, 249-280 (2018) · Zbl 1416.76177
[87] Price, W.; Chen, Y., A simulation of free surface waves for incompressible two-phase flows using a curvilinear level set formulation, Int. J. Numer. Methods Fluids, 51, 3, 305-330 (2006) · Zbl 1098.76053
[88] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981), Available from: · Zbl 0462.76020
[89] Muta, A.; Ramachandran, P.; Negi, P., An efficient, open source, iterative ISPH scheme, Comput. Phys. Commun., 255, Article 107283 pp. (2020) · Zbl 1523.76074
[90] Chiu, P. H.; Lin, Y. T., A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 1, 185-204 (2011) · Zbl 1427.76201
[91] Joshi, V.; Jaiman, R. K., A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows, J. Comput. Phys., 360, 137-166 (2018) · Zbl 1391.76651
[92] Williamson, J., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 1, 48-56 (1980) · Zbl 0425.65038
[93] Yang, K.; Aoki, T., Weakly compressible Navier-Stokes solver based on evolving pressure projection method for two-phase flow simulations, J. Comput. Phys., 431, Article 110113 pp. (2021) · Zbl 07511446
[94] Sun, D.; Tao, W., A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, Int. J. Heat Mass Transf., 53, 4, 645-655 (2010) · Zbl 1303.76126
[95] Hindenlang, F.; Bolemann, T.; Munz, C-D., Mesh curving techniques for high order discontinuous Galerkin simulations, (IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach (2015), Springer), 133-152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.