×

Variétés de drapeaux et réseaux de Toda. (Flag manifolds and Toda lattices). (French) Zbl 0744.58031

For the review see C. R. Acad. Sci., Paris, Sér. I 312, No. 3, 255-258 (1991; Zbl 0721.58021).

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
17B20 Simple, semisimple, reductive (super)algebras
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] Adler, M., van Moerbeke, P.: The Toda lattice, Dynkin diagrams, singularities and Abelian varieties. Invent. Math.103, 223–278 (1991) · Zbl 0735.14031 · doi:10.1007/BF01239513
[2] Bernstein, I.N., Gel’fand, I.M., Gel’fand, S.I.: Schubert cells and cohomology of the spaces G/P. Russ. Math. Surv.28, 1–26 (1973) · Zbl 0289.57024 · doi:10.1070/RM1973v028n03ABEH001557
[3] Bremner, M.R., Moody, R.V., Patera, J.: Tables of dominant weight multiplicities for representations of simple Lie algebras. New York: Marcel Dekker 1985 · Zbl 0557.17001
[4] Deift, P.A., Li, L.C., Nanda, T., Tomei, C.: The Toda flow on a generic orbit is integrable. Commun. Pure Appl. Math.39, 183–232 (1986) · Zbl 0606.58020 · doi:10.1002/cpa.3160390203
[5] Ercolani, N.M., Flaschka, H., Haine, L.: Painlevé balances and dressing transformations. (Preprint) · Zbl 0856.34011
[6] Flaschka, H.: The Toda lattice in the complex domain. In: Kashiwara, M., Kawai, T. (eds.) Algebraic Analysis, vol. 1, pp. 141–154. Boston, Mass.: Academic Press 1988
[7] Flaschka, H., Haine, L.: Torus orbits in G/P. Pacific J. Math.149, 251–292 (1991) · Zbl 0788.22017
[8] Flaschka, H., Zeng, Y.: Painlevé analysis for the semisimple Toda lattice. (Preprint)
[9] Gel’fand, I.M., Serganova, V.V.: Combinatorial geometries and torus strata on homogeneous compact manifolds. Russ. Math. Surv.42, 133–168 (1987) · Zbl 0639.14031 · doi:10.1070/RM1987v042n02ABEH001308
[10] Goodman, R., Wallach, N.R.: Classical and quantum mechanical systems of Toda lattice type, II. Solutions of the classical flows. Commun. Math. Phys.94, 177–217 (1984) · Zbl 0592.58028 · doi:10.1007/BF01209301
[11] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math.81, 973–1032 (1959) · Zbl 0099.25603 · doi:10.2307/2372999
[12] Kostant, B.: Lie group representations on polynomial rings. Am. J. Math.85, 327–404 (1963) · Zbl 0124.26802 · doi:10.2307/2373130
[13] Kostant, B.: On Whittaker vectors and representation theory. Invent. Math.48, 101–184 (1978) · Zbl 0405.22013 · doi:10.1007/BF01390249
[14] Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math.34, 195–338 (1979) · Zbl 0433.22008 · doi:10.1016/0001-8708(79)90057-4
[15] Ol’shanetskyi, M.A., Perelomov, A.M.: Explicit solutions of the classical generalized Toda models. Invent. Math.54, 261–269 (1979) · Zbl 0419.58008 · doi:10.1007/BF01390233
[16] Reyman, A.G.: Integrable systems connected with graded Lie algebras. J. Sov. Math.19, 1507–1545 (1982) · Zbl 0554.70010 · doi:10.1007/BF01091461
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.