×

Supergravity black holes and billiards and the Liouville integrable structure associated with Borel algebras. (English) Zbl 1271.83080

Summary: In this paper we show that the supergravity equations describing both cosmic billiards and a large class of black-holes are, generically, both Liouville integrable as a consequence of the same universal mechanism. This latter is provided by the Liouville integrable Poissonian structure existing on the dual Borel algebra \(\mathbb{B}_{\mathbb{N}} \) of the simple Lie algebra \(A_{\text{N - 1}}\). As a by product we derive the explicit integration algorithm associated with all symmetric spaces U/H\({}^*\) relevant to the description of time-like and space-like \(p\)-branes. The most important consequence of our approach is the explicit construction of a complete set of conserved involutive Hamiltonians \(\{\mathfrak{h}_{\alpha}\} \) that are responsible for integrability and provide a new tool to classify flows and orbits. We believe that these will prove a very important new tool in the analysis of supergravity black holes and billiards.

MSC:

83E50 Supergravity
83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets

References:

[1] J. Polchinski, Dirichlet-branes and Ramond-Ramond charges, Phys. Rev. Lett.75 (1995) 4724 [hep-th/9510017] [SPIRES]. · Zbl 1020.81797 · doi:10.1103/PhysRevLett.75.4724
[2] M. Gutperle and A. Strominger, Spacelike branes, JHEP04 (2002) 018 [hep-th/0202210] [SPIRES]. · doi:10.1088/1126-6708/2002/04/018
[3] K.S. Stelle, Brane solutions in supergravity, prepared for 11th Jorge Andre Swieca Summer School on Particle and Fields, Campos do Jordao, Brazil, 14-27 January (2001) [SPIRES]. · Zbl 1042.83033
[4] D.V. Gal’tsov and O.A. Rytchkov, Generating branes via σ-models, Phys. Rev.D 58 (1998) 122001 [hep-th/9801160] [SPIRES].
[5] P. Fré et al., Cosmological backgrounds of superstring theory and solvable algebras: Oxidation and branes, Nucl. Phys.B 685 (2004) 3 [hep-th/0309237] [SPIRES]. · Zbl 1107.83320 · doi:10.1016/j.nuclphysb.2004.02.031
[6] P. Fré, K. Rulik and M. Trigiante, Exact solutions for Bianchi type cosmological metrics, Weyl orbits of E8(8)subalgebras and p-branes, Nucl. Phys.B 694 (2004) 239 [hep-th/0312189] [SPIRES]. · Zbl 1151.83363 · doi:10.1016/j.nuclphysb.2004.06.011
[7] P. Fré, F. Gargiulo and K. Rulik, Cosmic billiards with painted walls in non-maximal supergravities: A worked out example, Nucl. Phys.B 737 (2006) 1 [hep-th/0507256] [SPIRES]. · Zbl 1109.83013 · doi:10.1016/j.nuclphysb.2005.10.023
[8] P. Fré, F. Gargiulo, K. Rulik and M. Trigiante, The general pattern of Kac Moody extensions in supergravity and the issue of cosmic billiards, Nucl. Phys.B 741 (2006) 42 [hep-th/0507249] [SPIRES]. · Zbl 1214.83044 · doi:10.1016/j.nuclphysb.2006.02.001
[9] P. Fré and A.S. Sorin, Integrability of supergravity billiards and the generalized Toda lattice equation, Nucl. Phys. B 733 (2006) 334 [hep-th/0510156] [SPIRES]. · Zbl 1119.83036 · doi:10.1016/j.nuclphysb.2005.10.030
[10] P. Fré and A.S. Sorin, The arrow of time and the Weyl group: all supergravity billiards are integrable, arXiv:0710.1059 [SPIRES]. · Zbl 1194.83097
[11] P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys.120 (1988) 295 [SPIRES]. · Zbl 0661.53064 · doi:10.1007/BF01217967
[12] V.D. Ivashchuk and V.N. Melnikov, Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity, J. Math. Phys.41 (2000) 6341 [hep-th/9904077] [SPIRES]. · Zbl 0977.83078 · doi:10.1063/1.1286671
[13] J. Demaret, M. Henneaux and P. Spindel, Nonoscillatory behavior in vacuum Kaluza-Klein cosmologies, Phys. Lett.B 164 (1985) 27 [SPIRES].
[14] J. Demaret, J.L. Hanquin, M. Henneaux, P. Spindel and A. Taormina, The fate of the mixmaster behavior in vacuum inhomogeneous Kaluza-Klein cosmological models, Phys. Lett.B 175 (1986) 129 [SPIRES].
[15] J. Demaret, Y. De Rop and M. Henneaux, Chaos in nondiagonal spatially homogeneous cosmological models in space-time dimensions <= 10, Phys. Lett.B 211 (1988) 37 [SPIRES].
[16] T. Damour, M. Henneaux, B. Julia and H. Nicolai, Hyperbolic Kac-Moody algebras and chaos in Kaluza-Klein models, Phys. Lett.B 509 (2001) 323 [hep-th/0103094] [SPIRES]. · Zbl 0977.83075
[17] T. Damour, S. de Buyl, M. Henneaux and C. Schomblond, Einstein billiards and overextensions of finite- dimensional simple Lie algebras, JHEP08 (2002) 030 [hep-th/0206125] [SPIRES]. · Zbl 1226.83083 · doi:10.1088/1126-6708/2002/08/030
[18] T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav.20 (2003) R145 [hep-th/0212256] [SPIRES]. · Zbl 1138.83306 · doi:10.1088/0264-9381/20/9/201
[19] S. de Buyl, M. Henneaux, B. Julia and L. Paulot, Cosmological billiards and oxidation, Fortsch. Phys.52 (2004) 548 [hep-th/0312251] [SPIRES]. · Zbl 1052.81036 · doi:10.1002/prop.200310143
[20] J. Brown, O.J. Ganor and C. Helfgott, M-theory and E10: billiards, branes and imaginary roots, JHEP08 (2004) 063 [hep-th/0401053] [SPIRES]. · doi:10.1088/1126-6708/2004/08/063
[21] F. Englert, M. Henneaux and L. Houart, From very-extended to overextended gravity and M- theories, JHEP02 (2005) 070 [hep-th/0412184] [SPIRES]. · doi:10.1088/1126-6708/2005/02/070
[22] T. Damour, Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras, gr-qc/0501064 [SPIRES]. · Zbl 1086.83027
[23] T. Damour, Poincaré, relativity, billiards and symmetry, hep-th/0501168 [SPIRES]. · Zbl 0991.83515
[24] M. Henneaux and B. Julia, Hyperbolic billiards of pure D = 4 supergravities, JHEP05 (2003) 047 [hep-th/0304233] [SPIRES]. · doi:10.1088/1126-6708/2003/05/047
[25] E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys.B 812 (2009) 343 [arXiv:0806.2310] [SPIRES]. · Zbl 1194.83092 · doi:10.1016/j.nuclphysb.2008.10.023
[26] M. Günaydin, A. Neitzke, B. Pioline and A. Waldron, Quantum attractor flows, JHEP09 (2007) 056 [arXiv:0707.0267] [SPIRES]. · doi:10.1088/1126-6708/2007/09/056
[27] A. Bouchareb et al., G2generating technique for minimal D = 5 supergravity and black rings, Phys. Rev.D 76 (2007) 104032 [Erratum ibid.D 78 (2008) 029901] [arXiv:0708.2361] [SPIRES].
[28] D. Gaiotto, W.W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP12 (2007) 093 [arXiv:0710.1638] [SPIRES]. · Zbl 1246.81244 · doi:10.1088/1126-6708/2007/12/093
[29] P. Fré and A.S. Sorin, Supergravity black holes and billiards and Liouville integrable structure of dual Borel algebras, arXiv:0903.2559 [SPIRES]. · Zbl 1271.83080
[30] A.A. Arhangel’skii, Completely integrable hamiltonian systems on a group of triangular matrices, Math. USSR Sb.36 (1980) 127. · Zbl 0433.58015 · doi:10.1070/SM1980v036n01ABEH001778
[31] P. Deift, L.C. Li, T. Nanda and C. Tomei, The toda flow on a generic orbit is integrable, Commun. Pure and Appl. Math.39 (1986) 183. · Zbl 0606.58020 · doi:10.1002/cpa.3160390203
[32] Y. Kodama and J. Ye, Toda hierarchy with indefinite metric, PhysicaD 91 (1996) 321 [solv-int/9505004]. · Zbl 0890.58025
[33] Y. Kodama and J. Ye, Iso-spectral deformations of general matrix and their reductions on Lie algebras, Commun. Math. Phys.178 (1996) 765 [solv-int/9506005]. · Zbl 0861.35109 · doi:10.1007/BF02108824
[34] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante, R-R scalars, U-duality and solvable Lie algebras, Nucl. Phys.B 496 (1997) 617 [hep-th/9611014] [SPIRES]. · Zbl 0934.81034 · doi:10.1016/S0550-3213(97)00220-4
[35] L. Andrianopoli et al., Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys.B 493 (1997) 249 [hep-th/9612202] [SPIRES]. · Zbl 0974.17506 · doi:10.1016/S0550-3213(97)00136-3
[36] P. Fré, U-duality, solvable Lie algebras and extremal black- holes, hep-th/9702167 [SPIRES].
[37] P. Fré, Solvable Lie algebras, BPS black holes and supergravity gaugings, Fortsch. Phys.47 (1999) 173 [hep-th/9802045] [SPIRES]. · doi:10.1002/(SICI)1521-3978(199901)47:1/3<173::AID-PROP173>3.0.CO;2-O
[38] G. Arcioni et al., N = 8 BPS black holes with 1/2 or 1/4 supersymmetry and solvable Lie algebra decompositions, Nucl. Phys.B 542 (1999) 273 [hep-th/9807136] [SPIRES]. · Zbl 0953.83055 · doi:10.1016/S0550-3213(98)00797-4
[39] M. Bertolini, M. Trigiante and P. Fré, N = 8 BPS black holes preserving 1/8 supersymmetry, Class. Quant. Grav.16 (1999) 1519 [hep-th/9811251] [SPIRES]. · Zbl 1047.83512 · doi:10.1088/0264-9381/16/5/305
[40] M. Bertolini, P. Fré and M. Trigiante, The generating solution of regular N = 8 BPS black holes, Class. Quant. Grav.16 (1999) 2987 [hep-th/9905143] [SPIRES]. · Zbl 0970.83058 · doi:10.1088/0264-9381/16/9/315
[41] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré and M. Trigiante, E7(7)duality, BPS black-hole evolution and fixed scalars, Nucl. Phys.B 509 (1998) 463 [hep-th/9707087] [SPIRES]. · Zbl 0934.83048 · doi:10.1016/S0550-3213(97)00675-5
[42] M. Bertolini and M. Trigiante, Regular BPS black holes: macroscopic and microscopic description of the generating solution, Nucl. Phys.B 582 (2000) 393 [hep-th/0002191] [SPIRES]. · Zbl 0983.83046 · doi:10.1016/S0550-3213(00)00216-9
[43] M. Bertolini and M. Trigiante, Regular RR and NS-NS BPS black holes, Int. J. Mod. Phys.A 15 (2000) 5017 [hep-th/9910237] [SPIRES]. · Zbl 0971.83030
[44] F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An exhaustive classification, Nucl. Phys.B 532 (1998) 245 [hep-th/9804056] [SPIRES]. · Zbl 1041.83522 · doi:10.1016/S0550-3213(98)00449-0
[45] L. Andrianopoli, F. Cordaro, P. Fré and L. Gualtieri, Non-semisimple gaugings of D = 5 N = 8 supergravity and FDAs, Class. Quant. Grav.18 (2001) 395 [hep-th/0009048] [SPIRES]. · Zbl 0982.83042 · doi:10.1088/0264-9381/18/3/303
[46] L. Andrianopoli, F. Cordaro, P. Fré and L. Gualtieri, Non-semisimple gaugings of D = 5 N = 8 supergravity, Fortsch. Phys.49 (2001) 511 [hep-th/0012203] [SPIRES]. · Zbl 0978.83045 · doi:10.1002/1521-3978(200105)49:4/6<511::AID-PROP511>3.0.CO;2-5
[47] P. Fré, Gaugings and other supergravity tools of p-brane physics, hep-th/0102114 [SPIRES].
[48] P. Fré and J. Rosseel, On full-edged supergravity cosmologies and their Weyl group asymptotics, arXiv:0805.4339 [SPIRES].
[49] D.V. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija9 (1975) 297. · Zbl 0324.53038 · doi:10.1070/IM1975v009n02ABEH001479
[50] S. Cecotti, Homogeneous Kähler manifolds and T algebras in N = 2 supergravity and superstrings, Commun. Math. Phys.124 (1989) 23 [SPIRES]. · Zbl 0685.53040 · doi:10.1007/BF01218467
[51] B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys.B 400 (1993) 463 [hep-th/9210068] [SPIRES]. · Zbl 0941.83529 · doi:10.1016/0550-3213(93)90413-J
[52] V. Cortés, Alekseevskian spaces, Diff. Geom. Appl.6 (1996) 129. · Zbl 0846.53030 · doi:10.1016/0926-2245(96)89146-7
[53] P. Fré et al., Tits-Satake projections of homogeneous special geometries, Class. Quant. Grav.24 (2007) 27 [hep-th/0606173] [SPIRES]. · Zbl 1114.83013 · doi:10.1088/0264-9381/24/1/003
[54] V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys.19 (1970) 525 [SPIRES]. · doi:10.1080/00018737000101171
[55] V.a. Belinsky, I.m. Khalatnikov and E.m. Lifshitz, A general solution of the Einstein equations with a time singularity, Adv. Phys.31 (1982) 639 [SPIRES]. · doi:10.1080/00018738200101428
[56] A. Keurentjes, Poincaré duality and G+++algebras, Commun. Math. Phys.275 (2007) 491 [hep-th/0510212] [SPIRES]. · Zbl 1220.83041 · doi:10.1007/s00220-007-0309-0
[57] G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP07 (2009) 003 [arXiv:0902.4438] [SPIRES]. · doi:10.1088/1126-6708/2009/07/003
[58] A. Borel and J. Tits, Groupes réductifs, Publications Mathémathiques de l’IHES27 (1965) 55 [Publications Mathémathiques de l’IHES41 (1972) 253].
[59] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, American Mathematical Society (2001). · Zbl 0993.53002
[60] W. Chemissany, J. Rosseel, M. Trigiante and T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories, Nucl. Phys.B 830 (2010) 391 [arXiv:0903.2777] [SPIRES]. · Zbl 1203.83022 · doi:10.1016/j.nuclphysb.2009.11.013
[61] P. Fré and A.S. Sorin, The integration algorithm for Nilpotent orbits of G/H* Lax systems: for extremal black holes, arXiv:0903.3771 [SPIRES].
[62] W. Chemissany, P. Fré and A.S. Sorin, The integration algorithm of Lax equation for both generic Lax matrices and generic initial conditions, arXiv:0904.0801 [SPIRES]. · Zbl 1204.81088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.