×

Isospectral flows related to Frobenius-Stickelberger-Thiele polynomials. (English) Zbl 1445.37052

Summary: The isospectral deformations of the Frobenius-Stickelberger-Thiele (FST) polynomials introduced in [V. P. Spiridonov et al., Commun. Math. Phys. 272, No. 1, 139–165 (2007; Zbl 1136.37041)] are studied. For a specific choice of the deformation of the spectral measure, one is led to an integrable lattice (FST lattice), which is indeed an isospectral flow connected with a generalized eigenvalue problem. In the second part of the paper the spectral problem used previously in the study of the modified Camassa-Holm (mCH) peakon lattice is interpreted in terms of the FST polynomials together with the associated FST polynomials, resulting in a map from the mCH peakon lattice to a negative flow of the finite FST lattice. Furthermore, it is pointed out that the degenerate case of the finite FST lattice unexpectedly maps to the interlacing peakon ODE system associated with the two-component mCH equation studied in [X.-K. Chang et al., Adv. Math. 299, 1–35 (2016; Zbl 1353.37139)].

MSC:

37K60 Lattice dynamics; integrable lattice equations
33E05 Elliptic functions and integrals
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
45C05 Eigenvalue problems for integral equations
34A55 Inverse problems involving ordinary differential equations
35Q51 Soliton equations

References:

[1] Adler, M.; van Moerbeke, P., Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials, Duke Math. J., 80, 215-62 (1995) · Zbl 0848.17027
[2] Adler, M.; van Moerbeke, P., String-orthogonal polynomials, string equations, and 2-Toda symmetries, Commun. Pure Appl. Math., 50, 241-290 (1997) · Zbl 0880.58012
[3] Adler, M.; van Moerbeke, P., Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems, Commun. Math. Phys., 207, 3, 589-620 (1999) · Zbl 1063.37057
[4] Aitken, A., Determinants and Matrices (1959), Edinburgh: Oliver and Boyd, Edinburgh · JFM 65.1111.05
[5] Álvarez-Fernández, C.; Mañas, M., Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Adv. Math., 240, 132-193 (2013) · Zbl 1293.30077
[6] Álvarez-Fernández, C.; Prieto, UF; Mañas, M., Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy, Adv. Math., 227, 1451-1525 (2011) · Zbl 1272.37033
[7] Ariznabarreta, G.; Mañas, M., Multivariate orthogonal polynomials and integrable systems, Adv. Math., 302, 628-739 (2016) · Zbl 1350.15002
[8] Aptekarev, A.; Branquinho, A.; Marcellán, F., Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation, J. Comput. Appl. Math., 78, 1, 139-160 (1997) · Zbl 0886.33007
[9] Baker, G.; Graves-Morris, P., Padé Approximants (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0923.41001
[10] Beals, R.; Sattinger, DH; Szmigielski, J., Multipeakons and the classical moment problem, Adv. Math., 154, 2, 229-257 (2000) · Zbl 0968.35008
[11] Beals, R.; Sattinger, DH; Szmigielski, J., Peakons, strings, and the finite Toda lattice, Commun. Pure Appl. Math., 54, 1, 91-106 (2001) · Zbl 1023.37039
[12] Chang, X.; Chen, X.; Hu, X.; Tam, H., About several classes of bi-orthogonal polynomials and discrete integrable systems, J. Phys. A Math. Theor., 48, 015204 (2015) · Zbl 1306.37069
[13] Chang, X.; He, Y.; Hu, X.; Li, S., Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions, Commun. Math. Phys., 364, 1069-1119 (2018) · Zbl 1414.82007
[14] Chang, X.; Hu, X.; Li, S., Degasperis-Procesi peakon dynamical system and finite Toda lattice of CKP type, Nonlinearity, 31, 4746-4775 (2018) · Zbl 1395.37045
[15] Chang, X.; Hu, X.; Li, S., Moment modification, multipeakons, and nonisospectral generalizations, J. Differ. Equ., 265, 3858-3887 (2018) · Zbl 1400.37079
[16] Chang, X.; Hu, X.; Li, S.; Zhao, J., An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type, Adv. Math., 338, 1077-1118 (2018) · Zbl 1408.37113
[17] Chang, X.; Hu, X.; Szmigielski, J., Multipeakons of a two-component modified Camassa-Holm equation and the relation with the finite Kac-van Moerbeke lattice, Adv. Math., 299, 1-35 (2016) · Zbl 1353.37139
[18] Chang, X.; Szmigielski, J., Lax integrability and the peakon problem for the modified Camassa-Holm equation, Commun. Math. Phys., 358, 1, 295-341 (2018) · Zbl 1406.35326
[19] Chu, M., Linear algebra algorithms as dynamical systems, Acta Numer., 17, 1-86 (2008) · Zbl 1165.65021
[20] Frobenius, G.; Stickelberger, L., Über die addition und multiplication der elliptischen functionen, J. Reine Angew. Math., 88, 146-184 (1880) · JFM 11.0294.01
[21] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach (2000), New York: New York University, New York · Zbl 0997.47033
[22] Deift, P.; Nanda, T.; Tomei, C., Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20, 1-22 (1983) · Zbl 0526.65032
[23] Kac, M.; van Moerbeke, P., On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices, Adv. Math., 16, 2, 160-169 (1975) · Zbl 0306.34001
[24] Kharchev, S.; Mironov, A.; Zhedanov, A., Faces of relativistic Toda chain, Int. J. Mod. Phys. A, 12, 15, 2675-2724 (1997) · Zbl 1089.37532
[25] Mukaihira, A.; Nakamura, Y., Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, J. Comput. Appl. Math., 139, 1, 75-94 (2002) · Zbl 1005.37038
[26] Nakamura, Y.; Zhedanov, A., Special solutions of the Toda chain and combinatorial numbers, J. Phys. A, 37, 5849 (2004) · Zbl 1050.37039
[27] Nenciu, I., Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle, Int. Math. Res. Not., 11, 647-686 (2005) · Zbl 1081.37047
[28] Papageorgiou, V.; Grammaticos, B.; Ramani, A., Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm, Lett. Math. Phys., 34, 2, 91-101 (1995) · Zbl 0831.58028
[29] Peherstorfer, F.; Spiridonov, VP; Zhedanov, AS, Toda chain, Stieltjes function, and orthogonal polynomials, Theor. Math. Phys., 151, 1, 505-528 (2007) · Zbl 1121.37054
[30] Ragnisco, O.; Bruschi, MM, Peakons, r-matrix and Toda lattice, Physica A, 228, 150-159 (1996)
[31] Rutishauser, H., Der quotienten-differenzen-algorithmus, Zeitschrift für angewandte Mathematik und Physik ZAMP, 5, 3, 233-251 (1954) · Zbl 0055.34702
[32] Spiridonov, V.; Tsujimoto, S.; Zhedanov, A., Integrable discrete time chains for the Frobenius-Stickelberger-Thiele polynomials, Commun. Math. Phys., 272, 1, 139-165 (2007) · Zbl 1136.37041
[33] Spiridonov, V.; Zhedanov, A., Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials, Methods Appl. Anal., 2, 4, 369-398 (1995) · Zbl 0859.33017
[34] Spiridonov, V.; Zhedanov, A., Discrete-time Volterra chain and classical orthogonal polynomials, J. Phys. A Math. Theor., 30, 24, 8727-8737 (1997) · Zbl 0928.39007
[35] Symes, W., The QR algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D, 4, 275-280 (1982) · Zbl 1194.37112
[36] Thiele, T., Interpolationsrechnung (1909), Leipzig: B.G. Teubner, Leipzig · JFM 40.0316.02
[37] Tsujimoto, S.; Nakamura, Y.; Iwasaki, M., The discrete Lotka-Volterra system computes singular values, Inverse Problems, 17, 53-58 (2001) · Zbl 0974.35110
[38] Vinet, L.; Zhedanov, A., An integrable chain and bi-orthogonal polynomials, Lett. Math. Phys., 46, 3, 233-245 (1998) · Zbl 0957.37055
[39] Watkins, D.; Elsner, L., Self-similar flows, Linear Algebra Appl., 110, 213-242 (1988) · Zbl 0666.15008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.