×

Space of isospectral periodic tridiagonal matrices. (English) Zbl 1477.57030

The object of study in this paper is the space \(X_{n,\lambda}\) of \(n \times n\) Hermitian matrices \([b_{ij}]\), having fixed simple spectrum \(\lambda=(\lambda_1<\cdots <\lambda_n)\), for which \(b_{ij}=0\) unless \(ij\) is an edge of the \(n\)-cycle. The real \(n\)-torus \(U(1)^n\) acts on \(X_{n,\lambda}\) by conjugation; scalar matrices act trivially and the quotient \((n-1)\)-torus \(\mathcal{T}\) acts effectively. The author uses methods from dynamical systems, mathematical physics, toric topology, and algebraic combinatorics to give an explicit description of \(X_{n,\lambda}\) and its decomposition into orbits.
The topology of \(X_{n,\lambda}\) is determined by the smallest positive and largest negative critical values, \(M\) and \(-m\), of the characteristic polynomial \(F(x)=\prod (x-\lambda_i)\); \(X_{n,\lambda}\) is a smooth manifold if and only if each of \(M\) and \(-m\) is achieved only once. The parameter \(B=b_{n,1}\prod_{i=1}^{n-1} b_{i,i+1}\) is constant on \(\mathcal{T}\)-orbits, taking values in a region \(\mathbb B\) bounded by two parabolic arcs, with common focus at 0, determined by \(M\) and \(m\). The action is free over the interior of \(\mathbb B\), away from zero. Over the boundary of \(\mathbb B\) there is nontrivial isotropy, constant on each parabolic arc, with further collapsing at the intersection points, all determined by the number of roots \(n_+\) and \(n_-\) of \(F(x)=M\) and \(F(x)=-m\), respectively.
The space of \(n \times n\) Hermitian tridiagonal matrices with spectrum \(\lambda\) is known to have orbit space equal to the permutohedron. The central fiber \(B=0\) is the union of \(n\) copies of this space, intersecting over lower-dimensional permutohedra in a cyclic manner. The space of orbits with \(B=0\) is then identified with a cyclic tiling of \(\mathcal{T}\) by \(n\) permutohedra. This allows computations in ordinary and equivariant cohomology using methods from algebraic combinatorics, showing in particular that \(X_{n,\lambda}\) is not equivariantly formal for \(n \geq 4\). The fundamental group of \(X_{n,\lambda}\) is free abelian of rank determined by \(n_+\) and \(n_-\), and is trivial if and only if \(-m\) and \(M\) are the only critical values of \(F(x)\), the most degenerate case.

MSC:

57R91 Equivariant algebraic topology of manifolds
57S12 Toric topology
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
52B70 Polyhedral manifolds
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
55N91 Equivariant homology and cohomology in algebraic topology
05E45 Combinatorial aspects of simplicial complexes
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
14H70 Relationships between algebraic curves and integrable systems
15A18 Eigenvalues, singular values, and eigenvectors
37C81 Equivariant dynamical systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
51M20 Polyhedra and polytopes; regular figures, division of spaces
55R80 Discriminantal varieties and configuration spaces in algebraic topology
55T10 Serre spectral sequences

References:

[1] 10.4310/HHA.2016.v18.n1.a1 · Zbl 1354.57032 · doi:10.4310/HHA.2016.v18.n1.a1
[2] 10.2969/jmsj/06841725 · Zbl 1361.57030 · doi:10.2969/jmsj/06841725
[3] 10.1007/s40590-016-0135-5 · Zbl 1375.57031 · doi:10.1007/s40590-016-0135-5
[4] ; Ayzenberg, Tr. Mat. Inst. Steklova, 302, 23 (2018) · Zbl 1431.57034
[5] 10.1093/imrn/rnz388 · Zbl 1481.14075 · doi:10.1093/imrn/rnz388
[6] 10.4310/JSG.2017.v15.n3.a2 · Zbl 1405.53103 · doi:10.4310/JSG.2017.v15.n3.a2
[7] 10.1215/S0012-7094-90-06103-4 · Zbl 0715.58004 · doi:10.1215/S0012-7094-90-06103-4
[8] ; Buchstaber, Tr. Mat. Inst. Steklova, 247, 41 (2004)
[9] 10.1090/surv/204 · doi:10.1090/surv/204
[10] ; Buchstaber, Oberwolfach Rep., 11, 1469 (2014)
[11] 10.17323/1609-4514-2016-16-2-237-273 · doi:10.17323/1609-4514-2016-16-2-237-273
[12] 10.17323/1609-4514-2019-19-3-397-463 · doi:10.17323/1609-4514-2019-19-3-397-463
[13] 10.1007/s00220-014-2035-8 · Zbl 1305.37030 · doi:10.1007/s00220-014-2035-8
[14] 10.1007/978-1-4757-6568-7 · doi:10.1007/978-1-4757-6568-7
[15] 10.1215/S0012-7094-91-06217-4 · Zbl 0733.52006 · doi:10.1215/S0012-7094-91-06217-4
[16] 10.1137/0720001 · Zbl 0526.65032 · doi:10.1137/0720001
[17] 10.1007/BF02188181 · Zbl 0623.57012 · doi:10.1007/BF02188181
[18] 10.1007/s002220050197 · Zbl 0897.22009 · doi:10.1007/s002220050197
[19] ; Krichever, Mirror symmetry, IV. AMS/IP Stud. Adv. Math., 33, 139 (2002)
[20] ; Kuroki, Trends Math., 11, 113 (2009)
[21] 10.2478/s11533-011-0041-z · Zbl 1236.57045 · doi:10.2478/s11533-011-0041-z
[22] 10.1007/BF01418827 · Zbl 0361.15010 · doi:10.1007/BF01418827
[23] 10.1112/S0010437X09004138 · Zbl 1217.13009 · doi:10.1112/S0010437X09004138
[24] 10.1016/j.aim.2009.07.001 · Zbl 1182.52010 · doi:10.1016/j.aim.2009.07.001
[25] 10.1134/S0371968515010100 · doi:10.1134/S0371968515010100
[26] 10.1016/0001-8708(76)90114-6 · Zbl 0345.13017 · doi:10.1016/0001-8708(76)90114-6
[27] 10.1007/BF01218376 · Zbl 0472.13012 · doi:10.1007/BF01218376
[28] 10.1007/978-1-4899-6752-7 · doi:10.1007/978-1-4899-6752-7
[29] 10.1016/0022-4049(91)90155-U · Zbl 0727.06009 · doi:10.1016/0022-4049(91)90155-U
[30] 10.1215/S0012-7094-84-05144-5 · Zbl 0558.57006 · doi:10.1215/S0012-7094-84-05144-5
[31] 10.3934/jgm.2013.5.511 · Zbl 1319.37046 · doi:10.3934/jgm.2013.5.511
[32] 10.1016/j.aim.2011.04.007 · Zbl 1226.57037 · doi:10.1016/j.aim.2011.04.007
[33] 10.2140/agt.2018.18.3031 · Zbl 1401.57046 · doi:10.2140/agt.2018.18.3031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.