×

The geometry of matrix eigenvalue methods. (English) Zbl 0639.34046

The authors introduce what they claim to be a natural geometric setting for studying the numerical matrix eigenvalue methods. The mathematical tools used in establishing this setting come from the theory of Lie transformation groups and the analysis of the relations between the matrix Riccati equation and the standard matrix eigenvalue methods. The paper opens up an interesting research line in the use of differential geometry in the study of matrix eigenvalue methods.
Reviewer: U.D’Ambrosio

MSC:

53C30 Differential geometry of homogeneous manifolds
37N99 Applications of dynamical systems
57S25 Groups acting on specific manifolds
Full Text: DOI

References:

[1] Ammar, Gregory and Martin, Clyde, ?Riccati Equations and the Matrix Eigenvalue Problem?, Allerton Conference on Communication, Computing, and Control, Urbana, Illinois, 1982.
[2] Anderson, B. D. O. and Moore, J. B., Linear Optimal Control, Prentice-Hall, Englewood Cliffs, 1971. · Zbl 0321.49001
[3] Batterson, Steve, ?Structurally Stable Grassmann Transformations?, Trans. Amer. Math. Soc. 231 (1977), 385-404. · Zbl 0379.58013 · doi:10.1090/S0002-9947-1977-0448443-6
[4] Buurema, Hendrik Jan, ?A Geometric Proof of Convergence for the QR Method?, PhD dissertation, Rijksuniversiteit te Groningen, 1970.
[5] Chevalley, Claude, Theory of Lie Groups, Princeton University Press, Princeton, 1946. · Zbl 0063.00842
[6] Deift, P., Nanda, T., and Tomei, C., ?Ordinary Differential Equations and the Symmetric Eigenvalue Problem?, SIAM J. Numer. Anal. 20 (1983), 1-22. · Zbl 0526.65032 · doi:10.1137/0720001
[7] Doolin, B. F. and Martin, C. F., ?Global Differential Geometry: An Introduction for Control Engineers?, NASA Reference Publication 1091, 1982.
[8] Dorato, Peter and Levis, Alexander H., ?Optimal Linear Regulators: The Discrete-Time Case?, IEEE Trans. Aut. Cont. AC-16 (1971), 613-620. · doi:10.1109/TAC.1971.1099832
[9] Franks, John M., Homology and Dynamical Systems, CBMS Regional Conf. Series in Math., No. 49, Amer. Math. Soc., Providence, 1982.
[10] Golub, Gene H. and Van Loan, Charles F., Matrix Computations, Johns Hopkins University Press, Baltimore, 1983. · Zbl 0559.65011
[11] Helgason, Sigurdur, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. · Zbl 0451.53038
[12] Hermann, Robert, ?Compactifications of Homogeneous Spaces I?, J. Math. Mech. 14 (1965), 655-678. · Zbl 0141.19604
[13] Hermann, Robert, Differential Geometry and the Calculus of Variations, 2nd edn., Math Sci. Press, Brookline, 1977. · Zbl 0371.49001
[14] Hermann, Robert, Cartanian Geometry, Nonlinear Waves and Control Theory, Part A, Math. Sci. Press, Brookline, 1979.
[15] Hermann, Robert and Martin, Clyde, ?Lie Theoretic Aspects of the Riccati Equation?, Proceedings of the 1977 IEEE Conference on Decision and Control, New Orleans, 1977, pp. 265-270. · Zbl 0362.93002
[16] Hermann, Robert and Martin, Clyde, ?Lie and Morse Theory of Periodic Orbits of Vector Fields and Matrix Riccati Equations, I: General Lie-Theoretic Methods?, Math. Systems Theory 15 (1982), 277-284. · Zbl 0508.58034 · doi:10.1007/BF01786984
[17] Hermann, Robert and Martin, Clyde, ?Lie and Morse Theory of Periodic Orbits of Vector Fields and Matrix Riccati Equations, II?, Math. Systems Theory 16 (1983), 297-306. · Zbl 0527.58033 · doi:10.1007/BF01744584
[18] Hilton, P. J. and Wylie, S., Homology Theory, Cambridge University Press, Cambridge, 1960.
[19] Hirsh, Morris W. and Smale, Stephen, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974.
[20] Martin, Clyde F., ?Finite Escape Time for Riccati Differential Equations?, Systems Control Lett. 1 (1981), 127-131. · Zbl 0481.93040 · doi:10.1016/S0167-6911(81)80050-3
[21] Montgomery, Deane and Zippin, Leo, Topological Transformation Groups, Interscience, New York, 1955.
[22] Nanda, T. R., ?Isospectral Flows on Band Matrices?, PhD dissertation, New York University, 1982.
[23] Parlett, B.M. and Poole, W. G. Jr., ?A Geometric Theory for the QR, LU, and Power Iterations?, SIAM J. Numer. Anal. 10 (1973), 389-412. · Zbl 0253.65018 · doi:10.1137/0710035
[24] Potter, James E., ?Matrix Quadratic Solutions?, J. SIAM Appl. Math. 14 (1966), 496-501. · Zbl 0144.02001 · doi:10.1137/0114044
[25] Schneider, C. R., ?Global Aspects of the Matrix Riccati Equation?, Math. Systems Theory 7 (1973), 281-286. · Zbl 0273.58006 · doi:10.1007/BF01795945
[26] Shayman, Mark A., ?Varieties of Invariant Subspaces and The Algebraic Riccati Equation?, PhD dissertation, Harvard University, 1980.
[27] Shimomura, N., ?A Theorem on the Fixed Point Set of a Unipotent Transformation on the Flag Manifold?, J. Math. Soc. Japan 32 No. 1 (1980). · Zbl 0413.20037
[28] Smale, Stephen, ?Differentiable Dynamical Systems?, Bull. Amer. Math. Soc. 73 (1967), 747-817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[29] Watkins, David S., ?Understanding the QR Algorithm?, SIAM Rev. 24 (1982), 427-440. · Zbl 0525.65018 · doi:10.1137/1024100
[30] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
[31] Willems, Jan C., ?Least Squares Stationary Optimal Control and the Algebraic Riccati Equation?, IEEE Trans. Aut. Cont. AC-16 (1971), 621-634. · doi:10.1109/TAC.1971.1099831
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.