×

\(S\)-injective modules. (English) Zbl 1540.16005

Summary: Let \(S\) be a multiplicative subset of a ring \(R\) with unity. A unitary right \(R\)-module \(M\) is referred to as \(S\)-injective if there exist an element \(s \in S\) and an injective \(R\)-submodule \(Q\) of \(M\) such that \(Ms \subseteq Q \subseteq M\). In this paper, we study the structure of \(S\)-injective modules which extend the notion of injective modules. Some characterizations and various examples of \(S\)-injective modules are provided, and the \(S\)-variants of Baer’s criterion, the Bass-Papp theorem, and the Eakin-Nagata-Eisenbud theorem are proven.

MSC:

16D50 Injective modules, self-injective associative rings
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16D80 Other classes of modules and ideals in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
Full Text: DOI

References:

[1] Ahmed, H., \(S\)-Noetherian spectrum condition, Comm. Algebra, 46, 8, 3314-3321 (2018) · Zbl 1395.13016 · doi:10.1080/00927872.2017.1412455
[2] Ahmed, H.; Sana, H., \(S\)-Noetherian rings of the forms \({\cal{A} }[X]\) and \({\cal{A} }[\![X]\!]\), Comm. Algebra, 43, 9, 3848-3856 (2015) · Zbl 1329.13014 · doi:10.1080/00927872.2014.924127
[3] Ahmed, H.; Sana, H., Modules satisfying the \(S\)-Noetherian property, Comm. Algebra, 44, 5, 1941-1951 (2016) · Zbl 1347.13005 · doi:10.1080/00927872.2015.1027377
[4] Anderson, DD; Chun, S., McCoy modules and related modules over commutative rings, Comm. Algebra, 45, 6, 2593-2601 (2017) · Zbl 1369.13011 · doi:10.1080/00927872.2016.1233218
[5] Anderson, DD; Dumitrescu, T., \(S\)-Noetherian rings, Comm. Algebra, 30, 9, 4407-4416 (2002) · Zbl 1060.13007 · doi:10.1081/AGB-120013328
[6] Anderson, DD; Hamed, A.; Zafrullah, M., On \(S\)-GCD domains, J. Alg. App., 18, 4, 1950067 (2019) · Zbl 1477.13041 · doi:10.1142/S0219498819500671
[7] Baeck, J.: The rings where zero-divisor polynomials have zero-divisor coefficients, Rocky Mountain J. Math. 51(3) , 771-785 (2021) doi:10.1216/rmj.2021.51.771 · Zbl 1477.16040
[8] Baeck, J., On \(S\)-principal right ideal rings, AIMS Math., 7, 7, 12106-12122 (2022) · doi:10.3934/math.2022673
[9] Baeck, J., On modules related to McCoy modules, Open Math., 20, 1, 1734-1752 (2022) · Zbl 1508.16008 · doi:10.1515/math-2022-0545
[10] Baeck, J., Lee, G., Lim, J.W.: \(S\)-Noetherian rings and their extensions. Taiwanese J. Math. 20(6), 1231-1250 (2016) doi:10.11650/tjm.20.2016.7436 · Zbl 1357.16039
[11] Bass, H., Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 102, 1, 18-29 (1962) · Zbl 0126.06503 · doi:10.2307/1993878
[12] Bergman, GM, The Diamond Lemma for ring theory, Adv. Math., 29, 2, 178-218 (1978) · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[13] Bilgin, Z.; Reyes, ML; Tekir, Ü., On right \(S\)-Noetherian rings and \(S\)-Noetherian modules, Comm. Algebra, 46, 2, 863-869 (2018) · Zbl 1410.16026 · doi:10.1080/00927872.2017.1332199
[14] Dade, EC, Localization of injective modules, J. Algebra, 69, 2, 416-425 (1981) · Zbl 0461.13003 · doi:10.1016/0021-8693(81)90213-1
[15] Eakin, PM, The converse to a well known theorem on Noetherian rings, Math. Ann., 177, 4, 278-282 (1968) · Zbl 0155.07903 · doi:10.1007/BF01350720
[16] Eisenbud, D., Subrings of Artinian and Noetherian Rings, Math. Ann., 185, 3, 247-249 (1970) · Zbl 0207.04702 · doi:10.1007/BF01350264
[17] Formanek, E.; Jategaonkar, AV, Subrings of Noetherian rings, Proc. Amer. Math. Soc., 46, 2, 181-186 (1974) · Zbl 0267.13009 · doi:10.1090/S0002-9939-1974-0414625-5
[18] Golan, JS; Head, T., Modules and the structure of rings: a primer (1991), New York: Marcel Dekker, New York · Zbl 0753.16001
[19] Goodearl, KR, Von Neumann Regular rings (1979), Ltd: Pitman Publ, Ltd · Zbl 0411.16007
[20] Goodearl, K.R., Warfield, R.B.: An Introduction to Noncommutative Noetherian Rings, Second edition, London Math. Soc. Stud. Texts, Vol. 61, Cambridge Univ. Press (2004) · Zbl 1101.16001
[21] Hamed, A.; Kim, H., On integral domains in which every ascending chain on principal ideals is \(S\)-stationary, Bull. Korean Math. Soc., 57, 5, 1215-1229 (2020) · Zbl 1476.13011 · doi:10.4134/BKMS.b190903
[22] Hosaka, H.; Ishikawa, T., On Eakin-Nagata’s theorem, J. Math. Kyoto Univ., 13, 3, 413-416 (1973) · Zbl 0279.16009 · doi:10.1215/kjm/1250523317
[23] Hungerford, T.W.: Algebra, Springer-Verlag (1974) · Zbl 0293.12001
[24] Kaplansky, I.: Commutative Rings, revised ed., Grad. Lectures in Math., Univ. of Chicago Pr., Chicago and London (1974) · Zbl 0296.13001
[25] Kim, DK; Lim, JW, The Cohen type theorem and the Eakin-Nagata type theorem for S-Noetherian rings revisited, Rocky Mountain J. Math., 50, 2, 619-630 (2020) · Zbl 1440.13016 · doi:10.1216/rmj.2020.50.619
[26] Kim, DK; Lim, JW, When are graded rings graded S-Noetherian rings, Mathematics, 8, 9, 1532 (2020) · doi:10.3390/math8091532
[27] Kwon, MJ; Lim, JW, On nonnil-S-Noetherian rings, Mathematics, 8, 9, 1428 (2020) · doi:10.3390/math8091428
[28] Lam, T.Y.: Lectures on Modules and Rings, Grad. Texts in Math. Vol. 189, Springer-Verlag, New York (1999) · Zbl 0911.16001
[29] Lee, G., Baeck, J., Lim, J.W.: Eakin-Nagata-Eisenbud theorem for right \(S\)-Noetherian rings, Taiwanese J. Math. 27(2), 237-257 (2023) doi:10.11650/tjm/221101 · Zbl 1529.16018
[30] Lim, JW, A note on \(S\)-Noetherian domains, Kyungpook Math. J., 55, 3, 507-514 (2015) · Zbl 1329.13006 · doi:10.5666/KMJ.2015.55.3.507
[31] Lim, JW; Oh, DY, \(S\)-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218, 6, 1075-1080 (2014) · Zbl 1282.13009 · doi:10.1016/j.jpaa.2013.11.003
[32] Lim, JW; Oh, DY, \(S\)-Noetherian properties of composite ring extensions, Comm. Algebra, 43, 7, 2820-2829 (2015) · Zbl 1329.13001 · doi:10.1080/00927872.2014.904329
[33] Lim, JW; Oh, DY, Chain conditions on composite Hurwitz series rings, Open Math., 15, 1, 1161-1170 (2017) · Zbl 1386.13010 · doi:10.1515/math-2017-0097
[34] Nagata, M., A type of subrings of a noetherian ring, J. Math. Kyoto Univ., 8, 3, 465-467 (1968) · Zbl 0184.06701 · doi:10.1215/kjm/1250524062
[35] Özen, M.; Naji, OA; Tekir, Ü.; Koç, S., On modules satisfying \(S\)-Noetherian spectrum condition, Commun. Math. Stat., 11, 3, 649-662 (2023) · Zbl 1522.13028 · doi:10.1007/s40304-021-00268-1
[36] Papp, Z., On algebraically closed modules, Publ. Math. Decrecen, 6, 311-327 (1959) · Zbl 0090.02405 · doi:10.5486/PMD.1959.6.3-4.15
[37] Qi, W., Kim, H., Wang, F., Chen, M., Zhao, W.: Uniformly \(S\)-Noetherian rings, arXiv:2201.07913v1. doi:10.48550/arXiv.2201.07913
[38] Rotman, J.J.: An introduction to homological algebra, 2nd ed., Springer (2009) · Zbl 1157.18001
[39] Rowen, LH, Ring Theory (1988), Boston: Academic Press Inc, Boston · Zbl 0651.16002
[40] Zariski, O., Samuel, P.: Commutative Algebra, Vol. 1, Princeton (1958) · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.