×

Optimization of Reynolds stress model coefficients at multiple discrete flow regions for three-dimensional realizations of fractal-generated turbulence. (English) Zbl 07881320

Summary: The quantification of global turbulence statistical moments generated by grid turbulators is crucial for the enhancement of conjugate heat transfer in industrial thermo-fluid systems. As such, there is a need for precise, low-cost alternatives to numerically model three-dimensional flow dynamics of fractal-generated turbulence (FGT) behind multilength-scale square fractal grids (SFGs), in contrast to previously-reported direct numerical simulations. In this study, a numerical framework consisting of multiple applications of the Reynolds stress model (RSM), each employing its own distinct set of optimized coefficient values, is developed by segregating an FGT flow domain into its production and decay regions with Nelder-Mead optimization on key coefficients then performed independently for each region. The flow fields predicted by such RSM framework achieved overall disparities below 3% and 13% w.r.t. reported experimental measurements of mean velocity and turbulence intensity, respectively, considering the evolution in the flow domain along the streamwise, vertical, and spanwise directions. This is therefore the first documentation of any RANS-turbulence model being validated for mean velocity and turbulence intensity predictions of FGT in all three-dimensions \(.\) Thereafter, this proposed RSM framework is generalized to predict industry-relevant turbulence statistical moments of four additional FGT flows. The predicted centerline-statistics are verified against reported experiments, and the findings potentially enable realizations of FGT induced by arbitrary SFGs without relying on a posteriori validation while eliminating further reliance on the Nelder-Mead optimization algorithm on a case-by-case basis. The findings indicate a potential to apply the model coefficients as continuous functions of space to simulate the entire FGT domain. Overall, the accurate and numerically sustainable realizations of FGT in 3D provide valuable insights to engineer potent fluid-solid heat transfer via passive turbulence management within HVAC systems.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Argyropoulos, C. D.; Markatos, N. C., Recent advances on the numerical modelling of turbulent flows, Appl. Math Model., 39, 693-732, 2015 · Zbl 1432.76117
[2] Vinuesa, R., High-fidelity simulations in complex geometries: Towards better flow understanding and development of turbulence models, Results Eng., 11, Article 100254 pp., 2021
[3] Ouyang, Y.; Tang, K.-L.; Xiang, Y.; Zou, H.-K.; Chu, G.-W.; Agarwal, R. K.; Chen, J.-F., Evaluation of various turbulence models for numerical simulation of a multiphase system in a rotating packed bed, Comput. Fluids, 194, Article 104296 pp., 2019 · Zbl 1458.76057
[4] T. Gatski, C.L. RumseyLinear and Nonlinear Eddy Viscosity Models Cambridge, UK , Cambridge University Press , (Eds.), B.E. Launder, N.D. Sandham , in:2001, in: , , 9-46, 10.1017/CBO9780511755385.003..
[5] Al-Qadami, E. H.H.; Abdurrasheed, A. S.; Mustaffa, Z.; Yusof, K. W.; Malek, M. A.; Ghani, A. A., Numerical modelling of flow characteristics over sharp crested triangular hump, Results Eng., 4, Article 100052 pp., 2019
[6] Martínez-Filgueira, P.; Portal-Porras, K.; Fernandez-Gamiz, U.; Zulueta, E.; Soriano, J., Experimental and numerical modeling of an air jet impingement system, Eur. J. Mech. - B/Fluids, 94, 228-245, 2022
[7] Balabel, A.; El-Askary, W. A., On the performance of linear and nonlinear turbulence models in various jet flow applications, Eur. J. Mech. - B/Fluids, 30, 325-340, 2011 · Zbl 1258.76103
[8] Launder, B. E., Current capabilities for modelling turbulence in industrial flows, Appl. Sci. Res., 48, 247-269, 1991 · Zbl 0738.76034
[9] M.A. Leschziner, F.S. Lien, N. Ince, C.A. LinComputational Modelling of Complex 3D Flows with Second-Moment Closure Coupled to Low-Re Near-Wall Models Wiesbaden , Vieweg+Teubner Verlag , (Eds.), M. Deville, S. Gavrilakis, I.L. Ryhming , in:1996, in: , , 144-153, 10.1007/978-3-322-89838-8_20..
[10] K. Hanjalić, S. JakirlićSecond-Moment Turbulence Closure Modelling Cambridge, UK , Cambridge University Press , (Eds.), B.E. Launder, N.D. Sandham , in:2001, in: , , 47-101, 10.1017/CBO9780511755385.004..
[11] Hanjalić, K.; Launder, B. E., A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech, 52, 609-638, 1972 · Zbl 0239.76069
[12] Launder, B. E., Second-moment closure: present… and future?, Int. J. HeatFluid Flow, 10, 282-300, 1989
[13] Vasa, A.; Chaudhury, K., The vortex structures of the mean turbulent flow field in a 90-degree bend pipe, Eur. J. Mech. - B/Fluids, 98, 21-31, 2023 · Zbl 1520.76035
[14] Wronski, T.; Schönnenbeck, C.; Zouaoui-Mahzoul, N.; Brillard, A.; Brilhac, J.-F., Numerical simulation through Fluent of a cold, confined and swirling airflow in a combustion chamber, Eur. J. Mech. - B/Fluids, 96, 173-187, 2022 · Zbl 1500.76073
[15] Ghoudi, Z.; Benkhaldoun, F.; Piscaglia, F.; Hajjaji, N., Towards the modeling of the effect of turbulent water batches on the flow of slurries in horizontal pipes using CFD, Eur. J. Mech. - B/Fluids, 100, 208-222, 2023 · Zbl 1516.76091
[16] Zheng, C.; Zhang, Y., Numerical investigation on the drag reduction properties of a suction controlled high-rise building, J. Zhejiang Univ.-Sci. A, 11, 477-487, 2010
[17] Launder, B. E.; Reece, G. J.; Rodi, W., Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., 68, 537-566, 1975 · Zbl 0301.76030
[18] Comte-Bellot, G.; Corrsin, S., The use of a contraction to improve the isotropy of grid-generated turbulence, J. Fluid Mech., 25, 657-682, 1966
[19] Hurst, D.; Vassilicos, J. C., Scalings and decay of fractal-generated turbulence, Physics of Fluids, 19, 2007, 035103-035103-31 · Zbl 1146.76420
[20] Mazellier, N.; Vassilicos, J. C., Turbulence without Richardson-Kolmogorov cascade, Physics of Fluids, 22, 2010, 075101-075101-25 · Zbl 1190.76087
[21] Nagata, K.; Sakai, Y.; Inaba, T.; Suzuki, H.; Terashima, O.; Suzuki, H., Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence, Physics of Fluids, 25, 65102, 2013
[22] Laizet, S.; Vassilicos, J. C., DNS of Fractal-Generated Turbulence, Flow Turbul. Combust., 87, 673-705, 2011 · Zbl 1283.76028
[23] Nagata, K.; Suzuki, H.; Sakai, Y.; Hayase, T.; Kubo, T., Direct numerical simulation of turbulence characteristics generated by fractal grids, Int. Rev. Phys., 2, 400-409, 2008
[24] Suzuki, H.; Nagata, K.; Sakai, Y.; Hayase, T.; Hasegawa, Y.; Ushijima, T., Direct numerical simulation of fractal-generated turbulence, Fluid Dyn. Res., 45, 61409, 2013 · Zbl 1291.76188
[25] C.V. YeohDirect numerical simulation, study, and quantification of fractal-grid generated turbulent flows Ph. D. Thesis, Monash University Malaysia2022, , 10.26180/17874761.v1.
[26] Hoi, S. M.; Teh, A. L.; Ooi, E. H.; Chew, I. M.L.; Foo, J. J., Forced convective heat transfer optimization of plate-fin heat sink with insert-induced turbulence, Appl. Therm. Eng., 160, Article 114066 pp., 2019
[27] Hoi, S. M.; Teh, A. L.; Ooi, E. H.; Chew, I. M.L.; Foo, J. J., Plate-fin heat sink forced convective heat transfer augmentation with a fractal insert, Int. J. Therm. Sci., 142, 392-406, 2019
[28] Cafiero, G.; Discetti, S.; Astarita, T., Heat transfer enhancement of impinging jets with fractal-generated turbulence, Int. J. Heat Mass Transf., 75, 173-183, 2014
[29] Teh, A. L.; Siow, Y. H.; Chin, W. M.; Chia, C. M.; Foo, J. J., Thermal mixing enhancement of a free cooling/heating system with a 2D space-filling plate, Appl. Therm. Eng., 89, 946-957, 2015
[30] Laizet, S.; Lamballais, E.; Vassilicos, J. C., A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence, Comput Fluids, 39, 471-484, 2010 · Zbl 1242.76078
[31] Nelly, S. Mac; Nieratschker, W.; Nadler, M.; Einsle, K.; Delgado, A., Calibration of the reynolds stress model for the simulation of gas flows in corrugated tubes, Heat Transf. Eng., 39, 1235-1242, 2018
[32] Panda, J. P.; Mitra, A.; Joshi, A. P.; Warrior, H. V., Experimental and numerical analysis of grid generated turbulence with and without mean strain, Exp. Therm. Fluid Sci, 98, 594-603, 2018
[33] Mok, M. C.H.; Yeoh, C. V.; Tan, M. K.; Foo, J. J., Space-filling single square and square fractal grids induced turbulence: reynolds stress model parameters-optimization, Results Eng., 17, Article 100806 pp., 2023
[34] Melina, G.; Bruce, P. J.K.; Nedić, J.; Tavoularis, S.; Vassilicos, J. C., Heat transfer from a flat plate in inhomogeneous regions of grid-generated turbulence, Int. J. Heat Mass Transf., 123, 1068-1086, 2018
[35] Melina, G.; Bruce, P. J.K.; Hewitt, G. F.; Vassilicos, J. C., Heat transfer in production and decay regions of grid-generated turbulence, Int. J. Heat Mass Transf., 109, 537-554, 2017
[36] Watanabe, T.; Sakai, Y.; Nagata, K.; Ito, Y.; Hayase, T., Implicit large eddy simulation of a scalar mixing layer in fractal grid turbulence, Phys. Scr., 91, 74007, 2016
[37] Craft, T. J.; Launder, B. E., Principles and performance of TCL-based second-moment closures, Flow Turbul. Combust., 66, 355-372, 2001 · Zbl 0993.76033
[38] Gibson, M. M.; Launder, B. E., Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech, 86, 491-511, 1978 · Zbl 0377.76062
[39] Lin, C.-H.; Yen, C.-H.; Ferng, Y.-M., CFD investigating the flow characteristics in a triangular-pitch rod bundle using Reynolds stress turbulence model, Ann. Nucl. Energy, 65, 357-364, 2014
[40] Rotta, J., Statistische Theorie nichthomogener Turbulenz, Zeitschrift Für Physik, 129, 547-572, 1951 · Zbl 0042.43304
[41] Naot, D.; Shavit, A.; Wolfshtein, M., Interaction between components of the turbulent-velocity correlation tensor, Israel J. Technol., 8 (, 1970
[42] Shir, C. C., A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer, J Atmos Sci, 30, 1327-1339, 1973
[43] Versteeg, H. K.; Malalasekera, W., An Introduction to Computational Fluid Dynamics: the Finite Volume Method, Harlow, 2007, Pearson Education Ltd: Pearson Education Ltd Harlow, England New York
[44] Launder, B. E.; Spalding, D. B., The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng., 3, 269-289, 1974 · Zbl 0277.76049
[45] Edeling, W. N.; Cinnella, P.; Dwight, R. P.; Bijl, H., Bayesian estimates of parameter variability in the k-ε turbulence model, J. Comput. Phys., 258, 73-94, 2014 · Zbl 1349.76110
[46] Sosnowski, M.; Krzywanski, J.; Grabowska, K.; Gnatowska, R., Polyhedral meshing in numerical analysis of conjugate heat transfer, EPJ Web Conf., 180, 2018
[47] B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo, B. van Wachem, 2012, 1st ed., Cambridge University Press. · Zbl 1262.76002
[48] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308-313, 1965 · Zbl 0229.65053
[49] Guillas, S.; Glover, N.; Malki-Epshtein, L., Bayesian calibration of the constants of the k-ε turbulence model for a CFD model of street canyon flow, Comput. Methods Appl. Mech. Eng., 279, 536-553, 2014 · Zbl 1423.76148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.