×

Exploring Tsallis holographic dark energy scenario in \(f(R, T)\) gravity. (English) Zbl 07833874

Summary: In this paper we have analysed Tsallis holographic dark energy in a flat Friedmann-Robertson-Walker model under the framework of \(f(R, T)\) gravity. The effects of this model in a non interactive universe are studied by taking different IR cut-offs that include particle horizon, event horizon, conformal age of the universe and GO (Granda-Oliveros) horizon. The cosmic evolution is studied by determining the conventional cosmological tools including the density parameter \(\Omega_{DE}\), equation of state parameter \(\omega_{DE}\) and the deceleration parameter \(q\). We have analysed the impact of these parameters by assuming different values for the matter-curvature coupling constant \(\lambda\) and the Tsallis parameter \(\delta\). We observe that all our four models exhibit appropriate behavior for the system parameters and support the accelerated expansion mode described by phantom-like scenario. Stability was only achieved for event horizon (partially) based on the speed of sound \(v_s^2\). Furthermore we examined the behavior of our model by using various diagnostic mechanisms such as \(\omega_{DE} - \omega_{DE}^\prime\) analysis, statefinder pair \((r, s)\), \(Om\) diagnostic and statefinder hierarchy \(S_3^{(1)}\) and \(S_4^{(1)}\). The trajectories of the \(\omega_{DE} - \omega_{DE}^\prime\) show a transition from freezing to thawing region, whereas \(r\)-\(s\) plane corresponds to a phase shift between Chaplygin gas model and quintessence model for particle and event horizon and solely Chaplygin gas model for conformal age and quintessence for GO-horizon. \(Om\) parameter also supports the quintessence era while statefinder hierarchy distinguishes our model effectively from the \(\Lambda\)CDM model and demonstrates the distinctive nature of all our models.

MSC:

83Fxx Relativistic cosmology
83Cxx General relativity
83Dxx Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
Full Text: DOI

References:

[1] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astrophys. J., 116, 1009-1038, (1998)
[2] Perlmutter, S., Measurements of \(\omega\) and \(\lambda\) from 42 high-redshift supernovae, Astrophys. J., 517, 565, (1999) · Zbl 1368.85002
[3] Perlmutter, S., New constraints on \(\omega_m , \omega_\lambda\) and \(\omega\) from an independent set of II high-redshift supernovae observed with the hubble space telescope, Astrophys. J., 598, 102, (2003)
[4] Komatsu, E., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl., 192, 18, (2011)
[5] L5-L9
[6] Hawkins, E., The \(2 d f\) galaxy redshift survey: correlation functions, peculiar velocities and the matter density of the universe, Mon. Not. R. Astron. Soc., 346, 78, (2003)
[7] Eisenstein, D. J., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J., 633, 560-574, (2005)
[8] Jain, B., Cross-correlation tomography: measuring dark energy evolution with weak lensing, A. Taylor, Phys. Rev. Lett., 91, 141302, (2003)
[9] Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S. D., Dark energy cosmology; the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci., 342, 155-228, (2012) · Zbl 1314.83037
[10] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1, (1989) · Zbl 1129.83361
[11] Chiba, T., Kinetically driven quintessence, Phys. Rev. D, 62, 023511, (2000)
[12] Picon, C. A., A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett., 85, 4438-4441, (2000)
[13] Feng, B.; Wang, X.; Zhang, X., Dark energy constraints from the cosmic age and supernova, Phys. Lett. B, 607, 35-41, (2005)
[14] Hamed, N. A., Ghost condensation and a consistent infrared modification of gravity”, JHEP, 0405, 074, (2004)
[15] Caldwell, R. R., A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Phys. Lett. B, 545, 23, (2002)
[16] Kamenshchick, A. Y.; Moschella, U.; Pasquier, V., An alternative to quintessence, Phys. Lett. B, 511, 265-268, (2001) · Zbl 0969.83556
[17] A23
[18] Li, M., A model of holographic dark energy, Phys. Lett. B, 603, 1, (2004)
[19] Hooft, G., Dimensional reduction in quantum gravity, Conf. Proc. C, 930308, 284-296, (1993)
[20] Cohen, A. G.; Kaplan, D. B.; Nelson, A. E., Effective field theory, black holes, and the cosmological constant, Phys. Rev. Lett., 82, 4971, (1999) · Zbl 0949.83045
[21] Wei, H., Class. pilgrim dark energy, Quant. Grav., 29, 175008, (2012) · Zbl 1250.83071
[22] Sharif, M.; Zubair, M., Cosmological evolution of pilgrim dark energy, Astrophys. Space Sci., 352, 263-272, (2014)
[23] Sharif, M.; Jawad, A., Analysis of pilgrim dark energy models, Eur. Phys. J. C, 73, 2382, (2013)
[24] Sharif, M.; Zubair, M., Reconstructing \(f ( r )\) theory from pilgrim dark energy, Astrophys. Space Sci., 353, 699-705, (2014)
[25] Sharif, M.; Rani, S., Pilgrim dark energy in \(f ( t )\) gravity, J. Exper. Theor. Phys., 119, 75-82, (2014)
[26] Sotiriou, T. P.; Faraoni, V., F(r) theories, Rev. Mod. Phys., 82, 451-497, (2010) · Zbl 1205.83006
[27] Ferraro, R.; Fiorini, F., Non-trivial frames for \(f ( t )\) theories of gravity and beyond, Phys. Lett. B, 702, 75-80, (2011)
[28] Harko, T., \( f ( r , t )\) gravity, Phys. Rev. D, 84, 024020, (2011)
[29] Brans, C.; Dicke, R. H., Mach’S principle and a relativistic theory of gravitation, Phys. Rev. D, 124, 925-935, (1961) · Zbl 0103.21402
[30] Nojiri, S.; Odintsov, S. D., Modified gauss-bonnet theory as gravitational alternative for dark energy, Phys. Lett. B, 631, 1-6, (2005) · Zbl 1247.83292
[31] Dvali, G.; Gabadadze, G.; Porrati, M., \( 4 d\) gravity on a brane in \(5 d\) minkowski space, Phys. Lett. B, 485, 208-214, (2000) · Zbl 0961.83045
[32] Houndjo, M. J.S., Reconstruction of f (r, t) gravity describing matter dominated and accelerated phases, Int. J. Mod. Phys. D, 21, 1250003, (2012) · Zbl 1263.83132
[33] Sharif, M.; Zubair, M., Reconstruction and stability of \(f ( r , t )\) gravity with ricci and modified ricci dark energy, Astrophys. Space Sci., 349, 529-537, (2014)
[34] Pawar, D. D.; Mapari, R. V.; Agrawal, P. K., A modified holographic ricci dark energy model in \(f ( r , t )\) theory of gravity, J. Astrophys. Astro., 40, 13, (2019)
[35] Tsallis, C.; Cirto, L. J.L., Black hole thermodynamical entropy, Eur. Phys. J. C, 73, 2487, (2013)
[36] Tavayef, M., Tsallis holographic dark energy, Phys. Lett. B, 781, 195-200, (2018)
[37] Zadeh, M. A.; Sheykhi, A.; Moradpour, H.; Bamba, K., A note on tsallis holographic dark energy, Eur. Phys. J. C, 78, 940, (2018)
[38] M.A. Zadeh, et al., Effects of anisotropy on the sign-changeable interacting tsallis holographic dark energy, 2019. ArXiv:1901.05298v1.
[39] Zadeh, M. A.; Sheykhi, A.; Moradpour, H., Thermal stability of tsallis holographic dark energy in nonflat universe, Gen. Relativ. Gravit., 51, 12, (2019) · Zbl 1409.83242
[40] Ghaffari, S., Tsallis holographic dark energy in the brane cosmology, Phys. Dark Univ., 23, 100246, (2019)
[41] Ghaffari, S., Tsallis holographic dark energy in the brans-dicke cosmology, Eur. Phys. J. C, 78, 706, (2018)
[42] Aly, A. A., Tsallis holographic dark energy with granda-oliveros scale in \(( n + 1 )\)-dimensional FRW universe, Advan. Astron., 2019, 8138067, (2019)
[43] Sheykhi, A., Modified friedman equations from tsallis entropy, Phys. Lett. B, 785, 118-126, (2018) · Zbl 1398.83152
[44] Barrientos, J.; Rubilar, G. F., Comment on “\( f ( r , t )\) gravity”, Phys. Rev. D, 90, 028501, (2014)
[45] W. Fischler, L. Susskind, Holography and cosmology, 1998. ArXiv.hep-th/9806039v2.
[46] Caldwell, R. R.; Linder, E. V., Limits of quintessence, Phys. Rev. Lett., 95, 141301, (2005)
[47] Sahni, V., Statefinder - a new geometrical diagnostic of dark energy, J. Exper. Theoret. Phys. Lett., 77, 201-206, (2003)
[48] Peebles, P.; James, E.; Ratra, B., The cosmological constant and dark energy, Rev. Mod. Phys., 75, 559, (2003) · Zbl 1205.83082
[49] Myung, Y. S., Instability of holographic dark energy models, Phys. Lett. B, 652, 223-227, (2007) · Zbl 1248.83170
[50] Sahni, V.; Shafieloo, A.; Starobinsky, A. A., Two new diagnostics of dark energy, Phys. Rev. D, 78, 103502, (2008)
[51] Arabsalmani, M.; Sahni, V., Statefinder hierarchy: an extended null diagnostic for concordance cosmology, Phys. Rev. D, 83, 043501, (2011)
[52] N. Zhang, et al., Diagnosing tsallis holographic dark energy models with interactions, 2019. ArXiv:1905.04299v2.
[53] Saridakis, E. N.; Bamba, K.; Myrzakulov, R.; Anagnostopoulos, F. K., Holographic dark energy through tsallis entropy, JCAP, 1812, 012, (2018)
[54] Varshney, G.; Sharma, U. K.; Pradhan, A., Statefinder diagnosis for interacting tsallis holographic dark energy models with \(\omega - \omega^\prime\) pair, New Astron., 70, 36-42, (2019)
[55] Zhang, J. F.; Cui, J. L.; Zhang, X., Diagnosing holographic dark energy models with statefinder hierarchy, Eur. Phys. J. C, 74, 3100, (2014)
[56] Granda, L. N.; Oliveros, A., Infrared cut-off proposal for the holographic density, Phys. Lett. B, 669, 275-277, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.